Satoshi P Tsunoda

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8921758/publications.pdf
Version: 2024-02-01

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
Nature Neuroscience, 2008, 11, 631-633.

2 The Microbial Opsin Family of Optogenetic Tools. Cell, 2011, 147, 1446-1457.
28.9

471

3 Conversion of Channelrhodopsin into a Light-Gated Chloride Channel. Science, 2014, 344, 409-412.
$12.6 \quad 339$

A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature, 2018, 558, 595-599.
27.8

190

Channelrhodopsin-1 Initiates Phototaxis and Photophobic Responses in <i>Chlamydomonas</i> by
5 Immediate Light-Induced Depolarization. Plant Cell, 2008, 20, 1665-1677.
6.6

156

6 Color-tuned Channelrhodopsins for Multiwavelength Optogenetics. Journal of Biological Chemistry,
2012, 287, 31804-31812.
$7 \quad$ Photoactivation of Channelrhodopsin. Journal of Biological Chemistry, 2008, 283, 1637-1643.
3.4

146

8 A natural light-driven inward proton pump. Nature Communications, 2016, 7, 13415.
12.8

124
$9 \quad$ H+-Pumping Rhodopsin from the Marine Alga Acetabularia. Biophysical Journal, 2006, 91, 1471-1479.
0.5

75

10 A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide
phosphodiesterase activity. Journal of Biological Chemistry, 2017, 292, 7531-7541.

11 Observations of rotation within the FoF1-ATP synthase: deciding between rotation of the Focsubunit
ring and artifact. FEBS Letters, 2000, 470, 244-248.
12 Glu 87 of Channelrhodopsinâ€ł Causes pHâ€dependent Color Tuning and Fast Photocurrent Inactivation<sup>â€<|sup>. Photochemistry and Photobiology, 2009, 85, 564-569.

13 Crystal structure of heliorhodopsin. Nature, 2019, 574, 132-136.
$27.8 \quad 71$

Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chemical Reviews, 2018, 118, 10646-10658.

Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward
H ⁺ pumps. Science Advances, 2020, 6, eaaz2441.
10.3

65

```
        Cross-linking of Two \̂2 Subunits in the Closed Conformation in F1-ATPase. Journal of Biological
        Chemistry, 1999, 274, 5701-5706.
Proton exclusion by an aquaglyceroprotein: a voltage clamp study. Biology of the Cell, 2005, 97,
\(545-550\).
23 \begin{tabular}{l} 
Optogenetic approaches addressing extracellular modulation of neural excitability. Scientific \\
Reports, 2016, 6, 23947 .
\end{tabular}Probing conformations of the \(\hat{\imath}^{2}\) subunit of FOF1-ATP synthase in catalysis. Biochemical and BiophysicalStructural insights into the mechanism of rhodopsin phosphodiesterase. Nature Communications,
\(2020,11,5605\).

Functional characterization of sodium-pumping rhodopsins with different pumping properties. PLoS ONE, 2017, 12, e0179232.

Spectroscopic study of the transmembrane domain of a rhodopsinâ \(\epsilon^{\prime \prime}\) phosphodiesterase fusion protein
27 from a unicellular eukaryote. Journal of Biological Chemistry, 2019, 294, 3432-3443.

Ion Channel Properties of a Cation Channelrhodopsin, Ct_CCR4. Applied Sciences (Switzerland), 2019, 9, 3440.
2.5

19
\[
\begin{aligned}
& \text { Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin } \\
& \text { from Klebsormidium nitens. Communications Biology, 2021, 4, } 235 \text {. }
\end{aligned}
\]

Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light.
30 Biophysical Reviews, 2020, \(\overline{1} 2,453-459\).
3.2

13

Production of a Light-Gated Proton Channel by Replacing the Retinal Chromophore with Its Synthetic
Vinylene Derivative. Journal of Physical Chemistry Letters, 2018, 9, 2857-2862.
\(4.6 \quad 12\)

Molecular Properties of New Enzyme Rhodopsins with Phosphodiesterase Activity. ACS Omega, 2020, 5,
3.5

10
10602-10609.
7.0

10
33 Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump
systems. Metabolic Engineering, 2022, 72, 227-236.

A variety of photoreceptors and the frontiers of optogenetics. Biophysics and Physicobiology, 2022,```

