
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921728/publications.pdf Version: 2024-02-01



HONG-HUA FANC

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reversible Threeâ€Color Fluorescence Switching of an Organic Molecule in the Solid State via<br>"Pump–Trigger―Optical Manipulation. Angewandte Chemie, 2022, 134, .                                                                                                                    | 2.0  | 6         |
| 2  | Reversible Threeâ€Color Fluorescence Switching of an Organic Molecule in the Solid State via<br>"Pump–Trigger―Optical Manipulation. Angewandte Chemie - International Edition, 2022, 61, .                                                                                             | 13.8 | 27        |
| 3  | Photophysics of Twoâ€Dimensional Perovskites—Learning from Metal Halide Substitution. Advanced<br>Functional Materials, 2021, 31, 2103778.                                                                                                                                             | 14.9 | 41        |
| 4  | Stable Cesium Formamidinium Lead Halide Perovskites: A Comparison of Photophysics and Phase Purity<br>in Thin Films and Single Crystals. Energy Technology, 2020, 8, 1901041.                                                                                                          | 3.8  | 19        |
| 5  | Influence of morphology on photoluminescence properties of methylammonium lead tribromide films.<br>Journal of Luminescence, 2020, 220, 117033.                                                                                                                                        | 3.1  | 8         |
| 6  | Bandâ€Edge Exciton Fine Structure and Exciton Recombination Dynamics in Single Crystals of Layered<br>Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 1907979.                                                                                                            | 14.9 | 68        |
| 7  | Perovskite Singleâ€Crystal Microwireâ€Array Photodetectors with Performance Stability beyond 1 Year.<br>Advanced Materials, 2020, 32, e2001998.                                                                                                                                        | 21.0 | 130       |
| 8  | Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylamine.<br>Applied Physics Reviews, 2019, 6, 031401.                                                                                                                                        | 11.3 | 34        |
| 9  | Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering. Journal of<br>Materials Chemistry A, 2019, 7, 15951-15959.                                                                                                                                  | 10.3 | 72        |
| 10 | Charge Trap Formation and Passivation in Methylammonium Lead Tribromide. Journal of Physical Chemistry C, 2019, 123, 13812-13817.                                                                                                                                                      | 3.1  | 9         |
| 11 | Scalable fabrication of high-quality crystalline and stable FAPbI <sub>3</sub> thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale, 2019, 11, 5989-5997.                                                                                          | 5.6  | 20        |
| 12 | Understanding the Impact of Bismuth Heterovalent Doping on the Structural and Photophysical<br>Properties of CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Halide Perovskite Crystals with<br>Nearâ€IR Photoluminescence. Chemistry - A European Journal, 2019, 25, 5480-5488.     | 3.3  | 42        |
| 13 | Synthesis of ultra-narrow PbTe nanorods with extremely strong quantum confinement. Journal of<br>Materials Science and Technology, 2019, 35, 703-710.                                                                                                                                  | 10.7 | 5         |
| 14 | Constructing the Electronic Structure of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> and<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Perovskite Thin Films from Single-Crystal Band<br>Structure Measurements. Journal of Physical Chemistry Letters, 2019, 10, 601-609. | 4.6  | 78        |
| 15 | Effect of the Device Architecture on the Performance of<br>FA <sub>0.85</sub> MA <sub>0.15</sub> PbBr <sub>0.45</sub> I <sub>2.55</sub> Planar Perovskite Solar<br>Cells. Advanced Materials Interfaces, 2019, 6, 1801667.                                                             | 3.7  | 15        |
| 16 | Unravelling Lightâ€Induced Degradation of Layered Perovskite Crystals and Design of Efficient<br>Encapsulation for Improved Photostability. Advanced Functional Materials, 2018, 28, 1800305.                                                                                          | 14.9 | 95        |
| 17 | Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites.<br>Nature Communications, 2018, 9, 243.                                                                                                                                         | 12.8 | 188       |
| 18 | Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of<br>Postdeposition Ligand Removal. ACS Applied Materials & Interfaces, 2018, 10, 5626-5632.                                                                                           | 8.0  | 39        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes. ACS<br>Applied Materials & Interfaces, 2018, 10, 12878-12885.                                                   | 8.0  | 38        |
| 20 | Highly Reproducible Snâ€Based Hybrid Perovskite Solar Cells with 9% Efficiency. Advanced Energy<br>Materials, 2018, 8, 1702019.                                                                           | 19.5 | 726       |
| 21 | Understanding the Passivation Mechanisms and Opto-Electronic Spectral Response in<br>Methylammonium Lead Halide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2018,<br>10, 35580-35588. | 8.0  | 19        |
| 22 | Clarification of the Molecular Doping Mechanism in Organic Singleâ€Crystalline Semiconductors and their Application in Colorâ€Tunable Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801078.    | 21.0 | 53        |
| 23 | Compositionâ€Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance<br>Improvement. Advanced Functional Materials, 2018, 28, 1803130.                                        | 14.9 | 121       |
| 24 | Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives.<br>Materials Chemistry Frontiers, 2017, 1, 1422-1429.                                                   | 5.9  | 47        |
| 25 | Highly Efficient Three Primary Color Organic Singleâ€Crystal Lightâ€Emitting Devices with Balanced<br>Carrier Injection and Transport. Advanced Functional Materials, 2017, 27, 1604659.                  | 14.9 | 69        |
| 26 | Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. Small, 2017, 13, 1700673.                                                                                          | 10.0 | 62        |
| 27 | Broadly tunable metal halide perovskites for solid-state light-emission applications. Materials Today, 2017, 20, 413-424.                                                                                 | 14.2 | 204       |
| 28 | Stoichiometric control of the density of states in PbS colloidal quantum dot solids. Science Advances, 2017, 3, eaao1558.                                                                                 | 10.3 | 62        |
| 29 | Benzylamineâ€Treated Wideâ€Bandgap Perovskite with High Thermalâ€Photostability and Photovoltaic<br>Performance. Advanced Energy Materials, 2017, 7, 1701048.                                             | 19.5 | 188       |
| 30 | Efficient Perovskite Solar Cells over a Broad Temperature Window: The Role of the Charge Carrier Extraction. Advanced Energy Materials, 2017, 7, 1701305.                                                 | 19.5 | 52        |
| 31 | Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport<br>layer. APL Materials, 2017, 5, .                                                                  | 5.1  | 20        |
| 32 | Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Science and Applications, 2016, 5, e16056-e16056.                      | 16.6 | 194       |
| 33 | Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling Highâ€Efficiency and Airâ€Stable<br>Photovoltaic Cells. Advanced Materials, 2016, 28, 9986-9992.                                   | 21.0 | 532       |
| 34 | The Effect of the Microstructure on Trapâ€Assisted Recombination and Light Soaking Phenomenon in<br>Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 8094-8102.                    | 14.9 | 108       |
| 35 | Distribution of bromine in mixed iodide–bromide organolead perovskites and its impact on photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 16191-16197.                                | 10.3 | 29        |
| 36 | Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental<br>gases. Science Advances, 2016, 2, e1600534.                                                        | 10.3 | 304       |

| #  | Article                                                                                                                                                                                                                | IF         | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 37 | Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano, 2016, 10,<br>9776-9786.                                                                                                            | 14.6       | 351            |
| 38 | Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films. Advanced Functional<br>Materials, 2016, 26, 4653-4659.                                                                                          | 14.9       | 61             |
| 39 | Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids. Chemistry of Materials, 2016, 28, 4554-4562.                                                                                                    | 6.7        | 263            |
| 40 | N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability. Journal of Materials Chemistry A, 2016, 4, 2419-2426.                                                  | 10.3       | 100            |
| 41 | Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature<br>Photonics, 2016, 10, 333-339.                                                                                   | 31.4       | 1,271          |
| 42 | Plasmon-Photon Coupled Modes Lasing in a Silver-Coated Hemisphere. IEEE Photonics Technology<br>Letters, 2016, 28, 351-354.                                                                                            | 2.5        | 1              |
| 43 | Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based<br>Light-Emitting Devices. Scientific Reports, 2015, 5, 12445.                                                       | 3.3        | 33             |
| 44 | Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals. Advanced<br>Functional Materials, 2015, 25, 2378-2385.                                                                                | 14.9       | 318            |
| 45 | Temperature-Dependent Optical Properties of PbS/CdS Core/Shell Quantum Dot Thin Films: Probing the<br>Wave Function Delocalization. Journal of Physical Chemistry C, 2015, 119, 17480-17486.                           | 3.1        | 18             |
| 46 | Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices. ACS Nano, 2015,<br>9, 11951-11959.                                                                                                    | 14.6       | 121            |
| 47 | Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells. Journal of Materials Chemistry A, 2015, 3, 1450-1457.                                                                      | 10.3       | 91             |
| 48 | Organic Crystals: Fabrication and Characterization of Organic Single Crystalâ€Based Lightâ€Emitting<br>Devices with Improved Contact Between the Metallic Electrodes and Crystal (Adv. Funct. Mater.) Tj ETQq0 0 0 r   | gBT14Qverl | ock1:110 Tf 50 |
| 49 | Fabrication and Characterization of Organic Single Crystalâ€Based Lightâ€Emitting Devices with Improved<br>Contact Between the Metallic Electrodes and Crystal. Advanced Functional Materials, 2014, 24,<br>7085-7092. | 14.9       | 31             |
| 50 | Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section. Polymer Chemistry, 2014, 5, 479-488.                                                        | 3.9        | 52             |
| 51 | Functional organic single crystals for solid-state laser applications. Laser and Photonics Reviews, 2014, 8, 687-715.                                                                                                  | 8.7        | 160            |
| 52 | Highly Stable On-Chip Embedded Organic Whispering Gallery Mode Lasers. Journal of Lightwave<br>Technology, 2014, 32, 2415-2419.                                                                                        | 4.6        | 20             |
| 53 | Preparation and time-resolved fluorescence study of RGB organic crystals. Organic Electronics, 2013, 14, 389-395.                                                                                                      | 2.6        | 20             |
| 54 | Whisperingâ€gallery mode lasing from patterned molecular single•rystalline microcavity array. Laser<br>and Photonics Reviews, 2013, 7, 281-288.                                                                        | 8.7        | 85             |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Low threshold melt-processed two-photon organic surface emitting upconversion lasers. Organic Electronics, 2013, 14, 762-767.                                                                                                      | 2.6  | 9         |
| 56 | Lowered threshold of polymer distributed feedback laser by hybridizing waveguide and surface-plasmon polariton modes. Optics and Laser Technology, 2013, 45, 246-249.                                                              | 4.6  | 1         |
| 57 | Direct laser interference ablating nanostructures on organic crystals. Optics Letters, 2012, 37, 686.                                                                                                                              | 3.3  | 13        |
| 58 | Flexible lasers based on the microstructured single-crystalline ultrathin films. Journal of Materials<br>Chemistry, 2012, 22, 24139.                                                                                               | 6.7  | 24        |
| 59 | Top down fabrication of organic nanocrystals by femtosecond laser induced transfer method.<br>CrystEngComm, 2012, 14, 4596.                                                                                                        | 2.6  | 4         |
| 60 | Distributed feedback lasing from thin organic crystal based on active waveguide grating structures.<br>Organic Electronics, 2012, 13, 1602-1605.                                                                                   | 2.6  | 13        |
| 61 | Universal Electron Injection Dynamics at Nanointerfaces in Dyeâ€5ensitized Solar Cells. Advanced<br>Functional Materials, 2012, 22, 2783-2791.                                                                                     | 14.9 | 23        |
| 62 | Distributed Feedback Lasers Based on Thiophene/Phenylene Coâ€Oligomer Single Crystals. Advanced<br>Functional Materials, 2012, 22, 33-38.                                                                                          | 14.9 | 81        |
| 63 | Organic Single Crystalline Lasers: Distributed Feedback Lasers Based on Thiophene/Phenylene<br>Co-Oligomer Single Crystals (Adv. Funct. Mater. 1/2012). Advanced Functional Materials, 2012, 22, 32-32.                            | 14.9 | 1         |
| 64 | High-Quality Large-Size Organic Crystals Prepared by Improved Physical Vapor Growth Technique and<br>Their Optical Gain Properties. Journal of Physical Chemistry C, 2011, 115, 9171-9175.                                         | 3.1  | 28        |
| 65 | Two-Photon Absorption and Spectral-Narrowed Light Source. IEEE Journal of Quantum Electronics, 2010, 46, 1775-1781.                                                                                                                | 1.9  | 12        |
| 66 | Efficient Twoâ€₱hoton Excited Amplified Spontaneous Emission from Organic Single Crystals.<br>ChemPhysChem, 2010, 11, 1871-1875.                                                                                                   | 2.1  | 6         |
| 67 | High numerical aperture microlens arrays of close packing. Applied Physics Letters, 2010, 97, .                                                                                                                                    | 3.3  | 143       |
| 68 | Polarization dependent two-photon properties in an organic crystal. Applied Physics Letters, 2010, 97, .                                                                                                                           | 3.3  | 26        |
| 69 | A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Applied Physics<br>Letters, 2010, 96, .                                                                                                      | 3.3  | 49        |
| 70 | Amplified spontaneous emission in the cyano-substituted oligo(p-phenylenevinylene) organic crystals:<br>Effect of excitation wavelength. Applied Physics Letters, 2010, 96, .                                                      | 3.3  | 20        |
| 71 | Two-Photon Pumped Amplified Spontaneous Emission from Cyano-Substituted<br>Oligo( <i>p</i> -phenylenevinylene) Crystals with Aggregation-Induced Emission Enhancement. Journal<br>of Physical Chemistry C, 2010, 114, 11958-11961. | 3.1  | 92        |
| 72 | One-Step Preparation of Regular Micropearl Arrays for Two-Direction Controllable Anisotropic Wetting. Langmuir, 2010, 26, 12012-12016.                                                                                             | 3.5  | 73        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Two-photon excited highly polarized and directional upconversion emission from slab organic crystals. Optics Letters, 2010, 35, 441.                                                         | 3.3 | 53        |
| 74 | Temporal dynamics of two-photon-pumped amplified spontaneous emission in slab organic crystals.<br>Optics Letters, 2010, 35, 2561.                                                           | 3.3 | 14        |
| 75 | Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of<br>Intramolecular Charge Transfer State. Journal of Physical Chemistry B, 2010, 114, 128-134. | 2.6 | 188       |
| 76 | Solid state emission enhancement of 9,10-distyrylanthracene derivatives and amplified spontaneous emission from a large single crystal. New Journal of Chemistry, 2010, 34, 1838.            | 2.8 | 46        |
| 77 | Two-photon induced amplified spontaneous emission from needlelike triphenylamine-containing derivative crystals with low threshold. Applied Physics Letters, 2009, 94, 201113.               | 3.3 | 39        |
| 78 | Band-Gap-Controllable Photonic Crystals Consisting of Magnetic Nanocrystal Clusters in a Solidified<br>Polymer Matrix. Journal of Physical Chemistry C, 2009, 113, 18542-18545.              | 3.1 | 30        |
| 79 | Synthesis, characterization, two-photon absorption, and optical limiting properties of triphenylamine-based dendrimers. New Journal of Chemistry, 2009, 33, 2457.                            | 2.8 | 42        |