Patrick De Baetselier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921721/publications.pdf

Version: 2024-02-01

59 papers

3,642 citations

172457 29 h-index 53 g-index

59 all docs 59 docs citations

59 times ranked

5960 citing authors

#	Article	IF	CITATIONS
1	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	12.8	604
2	Efficient Targeting of Conserved Cryptic Epitopes of Infectious Agents by Single Domain Antibodies. Journal of Biological Chemistry, 2004, 279, 1256-1261.	3.4	238
3	The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016, 7, 13720.	12.8	217
4	Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. Journal of Leukocyte Biology, 2005, 77, 321-327.	3.3	216
5	M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Research, 2016, 76, 35-42.	0.9	184
6	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	14.3	172
7	Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Frontiers in Immunology, 2014, 5, 489.	4.8	163
8	PET Imaging of Macrophage Mannose Receptor–Expressing Macrophages in Tumor Stroma Using ¹⁸ F-Radiolabeled Camelid Single-Domain Antibody Fragments. Journal of Nuclear Medicine, 2015, 56, 1265-1271.	5.0	139
9	Interferonâ€Î³ and Nitric Oxide in Combination with Antibodies Are Key Protective Host Immune Factors duringTrypanosoma congolenseTc13 Infections. Journal of Infectious Diseases, 2006, 193, 1575-1583.	4.0	102
10	Alternatively Activated Myeloid Cells Limit Pathogenicity Associated with African Trypanosomiasis through the IL-10 Inducible Gene Selenoprotein P. Journal of Immunology, 2008, 180, 6168-6175.	0.8	92
11	Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunology, 1999, 21, 545-554.	1.5	88
12	African Trypanosomiasis: Naturally Occurring Regulatory T Cells Favor Trypanotolerance by Limiting Pathology Associated with Sustained Type 1 Inflammation. Journal of Immunology, 2007, 179, 2748-2757.	0.8	81
13	The lectin-like domain of tumor necrosis factor-α increases membrane conductance in microvascular endothelial cells and peritoneal macrophages. European Journal of Immunology, 1999, 29, 3105-3111.	2.9	74
14	Convergent evolution of cytokines. Nature, 1999, 400, 627-628.	27.8	71
15	Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology, 2008, 213, 823-835.	1.9	67
16	African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Frontiers in Immunology, 2018, 9, 218.	4.8	67
17	Dendritic cells fused with mastocytoma cells elicit therapeutic antitumor immunity., 1998, 76, 250-258.		63
18	Infection Stage-Dependent Modulation of Macrophage Activation in Trypanosoma congolense -Resistant and -Susceptible Mice. Infection and Immunity, 2002, 70, 6180-6187.	2.2	62

#	Article	IF	Citations
19	The cachexia associated with <i>Trypanosoma cruzi</i> acute infection in mice is attenuated by antiâ€TNFâ€a, but not by antiâ€ILâ€6 or antiâ€IFNâ€7 antibodies. Parasite Immunology, 1995, 17, 561-568.	1.5	60
20	African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 2007, 148, 3-13.	1.8	57
21	<i>Trypanosoma brucei</i> infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. Journal of Leukocyte Biology, 1998, 63, 429-439.	3.3	53
22	Tumor Necrosis Factor (TNF) Receptor–1 (TNFp55) Signal Transduction and Macrophageâ€Derived Soluble TNF Are Crucial for Nitric Oxide–Mediated <i>Trypanosoma congolense</i> Parasite Killing. Journal of Infectious Diseases, 2007, 196, 954-962.	4.0	53
23	MIF Contributes to Trypanosoma brucei Associated Immunopathogenicity Development. PLoS Pathogens, 2014, 10, e1004414.	4.7	45
24	Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. European Journal of Immunology, 2015, 45, 1482-1493.	2.9	45
25	Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages. PLoS Pathogens, 2015, 11, e1004873.	4.7	45
26	African trypanosome control in the insect vector and mammalian host. Trends in Parasitology, 2014, 30, 538-547.	3.3	43
27	The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 473-482.	1.9	43
28	ILâ€10 limits production of pathogenic TNF by M1 myeloid cells through induction of nuclear NFâ€PB p50 member in <i>Trypanosoma congolense</i> infectionâ€resistant C57BL/6 mice. European Journal of Immunology, 2011, 41, 3270-3280.	2.9	40
29	Development of a pHrodo-Based Assay for the Assessment of In Vitro and In Vivo Erythrophagocytosis during Experimental Trypanosomosis. PLoS Neglected Tropical Diseases, 2015, 9, e0003561.	3.0	34
30	Neutrophils enhance early Trypanosoma brucei infection onset. Scientific Reports, 2018, 8, 11203.	3.3	33
31	Mycobacterial proliferation in macrophages is prevented by incubation with lymphocytes activatedin vitro with a mycobacterial antigen complex. European Journal of Immunology, 1991, 21, 793-797.	2.9	29
32	E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo. Scientific Reports, 2015, 5, 12599.	3.3	29
33	Monitoring liver macrophages using nanobodies targeting Vsig4: Concanavalin A induced acute hepatitis as paradigm. Immunobiology, 2015, 220, 200-209.	1.9	27
34	Novel halfâ€life extended antiâ€MIF nanobodies protect against endotoxic shock. FASEB Journal, 2018, 32, 3411-3422.	0.5	27
35	Iron Homeostasis and <i>Trypanosoma brucei </i> Associated Immunopathogenicity Development: A Battle/Quest for Iron. BioMed Research International, 2015, 2015, 1-15.	1.9	26
36	Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology, 2009, 214, 737-747.	1.9	25

#	Article	IF	Citations
37	Membrane interaction of TNF is not sufficient to trigger increase in membrane conductance in mammalian cells. FEBS Letters, 1999, 460, 107-111.	2.8	24
38	Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Molecular Imaging and Biology, 2017, 19, 49-58.	2.6	24
39	B7-1, IFN \hat{I}^3 and anti-CTLA-4 co-operate to prevent T-cell tolerization during immunotherapy against a murine T-lymphoma. International Journal of Cancer, 2000, 87, 539-547.	5.1	23
40	Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology, 2017, 222, 807-813.	1.9	23
41	MIF-Mediated Hemodilution Promotes Pathogenic Anemia in Experimental African Trypanosomosis. PLoS Pathogens, 2016, 12, e1005862.	4.7	20
42	Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Frontiers in Immunology, 2017, 8, 724.	4.8	17
43	Active antitumor immunotherapy, with or without B7-mediated costimulation, increases tumor progression in an immunogenic murine T cell lymphoma model. Cancer Immunology, Immunotherapy, 1998, 45, 257-265.	4.2	15
44	The transduction pattern of ILâ€12â€encoding lentiviral vectors shapes the immunological outcome. European Journal of Immunology, 2015, 45, 3351-3361.	2.9	14
45	Reprint of: The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 858-867.	1.9	12
46	Specificity Evaluation and Disease Monitoring in Arthritis Imaging with Complement Receptor of the Ig superfamily targeting Nanobodies. Scientific Reports, 2016, 6, 35966.	3.3	11
47	NIRF-Molecular Imaging with Synovial Macrophages-Targeting Vsig4 Nanobody for Disease Monitoring in a Mouse Model of Arthritis. International Journal of Molecular Sciences, 2019, 20, 3347.	4.1	11
48	Lectin-deficient TNF mutants display comparable anti-tumour but reduced pro-metastatic potential as compared to the wild-type molecule. International Journal of Cancer, 2001, 91, 543-549.	5.1	8
49	Monocytic myeloid-derived suppressor cells home to tumor-draining lymph nodes via CCR2 and locally modulate the immune response. Cellular Immunology, 2021, 362, 104296.	3.0	7
50	Hepatocyte-derived IL-10 plays a crucial role in attenuating pathogenicity during the chronic phase of T. congolense infection. PLoS Pathogens, 2020, 16, e1008170.	4.7	5
51	The lectin-like domain of tumor necrosis factor-α increases membrane conductance in microvascular endothelial cells and peritoneal macrophages. European Journal of Immunology, 1999, 29, 3105-3111.	2.9	4
52	Visceral Leishmaniasis Relapse in HIV Patientsâ€"A Role for Myeloid-Derived Suppressor Cells?. PLoS Neglected Tropical Diseases, 2014, 8, e3132.	3.0	3
53	Dendritic cells fused with mastocytoma cells elicit therapeutic antitumor immunity. International Journal of Cancer, 1998, 76, 250-258.	5.1	3
54	The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Frontiers in Immunology, 2022, 13, 865395.	4.8	3

#	Article	IF	CITATIONS
55	Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius. PLoS Pathogens, 2022, 18, e1010376.	4.7	1
56	Title is missing!. , 2020, 16, e1008170.		0
57	Title is missing!. , 2020, 16, e1008170.		O
58	Title is missing!. , 2020, 16, e1008170.		0
59	Title is missing!. , 2020, 16, e1008170.		O