Buenaventura Guamis LÃ³pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Research International, 2007, 40, 725-732.	2.9	198
2	Applications of high-hydrostatic pressure on milk and dairy products: a review. Innovative Food Science and Emerging Technologies, 2002, 3, 295-307.	2.7	186
3	Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 2012, 56, 476-481.	1.8	185
4	Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chemistry, 2011, 127, 447-454.	4.2	163
5	Changes in textural, microstructural, and colour characteristics during ripening of cheeses made from raw, pasteurized or high-pressure-treated goats' milk. International Dairy Journal, 2001, 11, 927-934.	1.5	117
6	Inactivation of Spores of Bacillus cereus in Cheese by High Hydrostatic Pressure with the Addition of Nisin or Lysozyme. Journal of Dairy Science, 2003, 86, 3075-3081.	1.4	115
7	Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. Innovative Food Science and Emerging Technologies, 2013, 18, 89-94.	2.7	113
8	Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT - Food Science and Technology, 2012, 46, 42-48.	2.5	106
9	Comparing the Effects of Ultraâ€Highâ€Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. Journal of Food Science, 2013, 78, E199-205.	1.5	94
10	Ultra high pressure homogenization of almond milk: Physico-chemical and physiological effects. Food Chemistry, 2016, 192, 82-89.	4.2	93
11	Microbiological quality of mechanically recovered poultry meat treated with high hydrostatic pressure and nisin. Food Microbiology, 1998, 15, 407-414.	2.1	88
12	Soymilk treated by ultra high-pressure homogenization: Acid coagulation properties and characteristics of a soy-yogurt product. Food Hydrocolloids, 2009, 23, 490-496.	5.6	86
13	Application of high pressure treatment for cheese production. Food Research International, 2000, 33, 311-316.	2.9	85
14	Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocolloids, 2009, 23, 82-91.	5.6	83
15	Combined effect of nisin and high hydrostatic pressure on destruction of Listeria innocua and Escherichia coli in liquid whole egg. International Journal of Food Microbiology, 1998, 43, 15-19.	2.1	81
16	Lipolysis in cheese made from raw, pasteurized or high-pressure-treated goats' milk. International Dairy Journal, 2001, 11, 175-179.	1.5	81
17	Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. International Dairy Journal, 2002, 12, 35-44.	1.5	81
18	Comparison of the Effects of High Pressure and Thermal Treatments on the Casein Micelles in Goat's Milk. Journal of Agricultural and Food Chemistry, 1998, 46, 2523-2530.	2.4	80

#	Article	IF	CITATIONS
19	Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: comparative study in selective and non-selective media. Food Microbiology, 1999, 16, 357-365.	2.1	80
20	Acid coagulation properties and suitability for yogurt production of cows' milk treated by high-pressure homogenisation. International Dairy Journal, 2007, 17, 782-790.	1.5	78
21	Effect of UHPH on indigenous microbiota of apple juice. International Journal of Food Microbiology, 2010, 136, 261-267.	2.1	78
22	Populations of Aerobic Mesophils and Inoculated E. coli during Storage of Fresh Goat's Milk Cheese Treated with High Pressure. Journal of Food Protection, 1996, 59, 582-587.	0.8	77
23	Characterization of volatile compounds in ultra-high-pressure homogenized milk. International Dairy Journal, 2008, 18, 826-834.	1.5	76
24	Changes in the surface protein of the fat globules during ultra-high pressure homogenisation and conventional treatments of milk. Food Hydrocolloids, 2012, 29, 135-143.	5.6	76
25	Impact of ultra high pressure homogenization on pectin methylesterase activity and microbial characteristics of orange juice: A comparative study against conventional heat pasteurization. Innovative Food Science and Emerging Technologies, 2012, 13, 100-106.	2.7	71
26	Effect of high pressure combined with mild heat or nisin on inoculated bacteria and mesophiles of goat's milk fresh cheese. Food Microbiology, 2000, 17, 633-641.	2.1	70
27	Inactivation of Staphylococcus spp. strains in whole milk and orange juice using ultra high pressure homogenisation at inlet temperatures of 6 and 20°C. Food Control, 2007, 18, 1282-1288.	2.8	70
28	Inactivation of Listeria innocua in Milk and Orange Juice by Ultrahigh-Pressure Homogenization. Journal of Food Protection, 2006, 69, 86-92.	0.8	69
29	Changes in organic acids during ripening of cheeses made from raw, pasteurized or high-pressure-treated goats' milk. LWT - Food Science and Technology, 2004, 37, 247-253.	2.5	65
30	Effect of high-pressure processing on physico-chemical characteristics of fresh goats' milk cheese (Mató). International Dairy Journal, 2001, 11, 165-173.	1.5	63
31	Microbiological changes throughout ripening of goat cheese made from raw, pasteurized and high-pressure-treated milk. Food Microbiology, 2001, 18, 45-51.	2.1	60
32	Inactivation ofEscherichia coliinoculated in liquid whole egg by high hydrostatic pressure. Food Microbiology, 1998, 15, 265-272.	2.1	58
33	Inactivation by Ultrahigh-Pressure Homogenization of Escherichia coli Strains Inoculated into Orange Juice. Journal of Food Protection, 2006, 69, 984-989.	0.8	58
34	Heat damage evaluation in ultra-high pressure homogenized milk. Food Hydrocolloids, 2009, 23, 1974-1979.	5.6	58
35	Use of ultra-high-pressure homogenization to preserve apple juice without heat damage. High Pressure Research, 2009, 29, 52-56.	0.4	55
36	Effects of Ultra-High-Pressure Homogenization Treatment on the Lipolysis and Lipid Oxidation of Milk during Refrigerated Storage. Journal of Agricultural and Food Chemistry, 2008, 56, 7125-7130.	2.4	54

#	Article	IF	CITATIONS
37	Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. Journal of Food Engineering, 2009, 92, 63-69.	2.7	53
38	Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. Journal of Applied Microbiology, 2005, 98, 254-260.	1.4	52
39	Bactericidal efficacy of peracetic acid in combination with hydrogen peroxide against pathogenic and non pathogenic strains of Staphylococcus spp., Listeria spp. and Escherichia coli. Food Control, 2006, 17, 516-521.	2.8	50
40	Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 474-483.	5.4	50
41	Aseptically packaged UHPH-treated apple juice: Safety and quality parameters during storage. Journal of Food Engineering, 2012, 109, 291-300.	2.7	47
42	Sterilization and aseptic packaging of soymilk treated by ultra high pressure homogenization. Innovative Food Science and Emerging Technologies, 2014, 22, 81-88.	2.7	46
43	Effects of High-Pressure Treatment on the Sensory Quality of White Grape Juice. High Pressure Research, 2002, 22, 705-709.	0.4	44
44	The effect of high-pressure treatment at 300MPa on ripening of ewes' milk cheese. International Dairy Journal, 2008, 18, 129-138.	1.5	44
45	Reduction of counts of Listeria monocytogenes in cheese by means of high hydrostatic pressure. Food Microbiology, 2007, 24, 59-66.	2.1	43
46	Ultra-High Pressure Homogenization-Induced Changes in Skim Milk: Impact on Acid Coagulation Properties. Journal of Dairy Research, 2008, 75, 69-75.	0.7	42
47	Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: physicochemical, microbiological, nutritional and toxicological characteristics. Journal of the Science of Food and Agriculture, 2015, 95, 953-961.	1.7	42
48	Effect of high pressure on fresh cheese shelf-life. Journal of Food Engineering, 2012, 110, 248-253.	2.7	41
49	Changes in microstructural, textural and colour characteristics during ripening of Manchego-type cheese salted by brine vacuum impregnation. International Dairy Journal, 1999, 9, 91-98.	1.5	39
50	Quantification of lipolysis and lipid oxidation during cold storage of yogurts produced from milk treated by ultra-high pressure homogenization. Journal of Food Engineering, 2008, 89, 99-104.	2.7	39
51	High pressure treatment decelerates the lipolysis in a caprine cheese. Food Research International, 2003, 36, 1061-1068.	2.9	38
52	Use of Ultra-High Pressure Homogenization processing in winemaking: Control of microbial populations in grape musts and effects in sensory quality. Innovative Food Science and Emerging Technologies, 2018, 50, 50-56.	2.7	38
53	Characteristics of soymilk pasteurized by ultra high pressure homogenization (UHPH). Innovative Food Science and Emerging Technologies, 2013, 20, 73-80.	2.7	37
54	Commercial application of high-pressure processing for increasing starter-free fresh cheese shelf-life. LWT - Food Science and Technology, 2014, 55, 498-505.	2.5	37

#	Article	IF	CITATIONS
55	Ripening control of Manchego type cheese salted by brine vacuum impregnation. International Dairy Journal, 1997, 7, 185-192.	1.5	36
56	Proteolysis of ultra-high pressure homogenised treated milk during refrigerated storage. Food Chemistry, 2008, 111, 696-702.	4.2	36
57	Characterisation of volatile profile in soymilk treated by ultra high pressure homogenisation. Food Chemistry, 2013, 141, 2541-2548.	4.2	35
58	Synergistic effect of carbon dioxide atmospheres and high hydrostatic pressure to reduce spoilage bacteria on poultry sausages. LWT - Food Science and Technology, 2014, 58, 404-411.	2.5	35
59	Guidelines on reporting treatment conditions for emerging technologies in food processing. Critical Reviews in Food Science and Nutrition, 2022, 62, 5925-5949.	5.4	34
60	Changes in water binding in high-pressure treated cheese, measured by TGA (thermogravimetrical) Tj ETQq0 0 0	rgBT_/Over 2.7	rlo <u>çk</u> 10 Tf 5(
61	Fat content increases the lethality of ultra-high-pressure homogenization on Listeria monocytogenes in milk. Journal of Dairy Science, 2009, 92, 5396-5402.	1.4	32
62	Effect of tiger nut-derived products in gluten-free batter and bread. Food Science and Technology International, 2015, 21, 323-331.	1.1	32
63	Cheesemaking aptitude of two Spanish dairy ewe breeds: Changes during lactation and relationship between physico-chemical and technological properties. Small Ruminant Research, 2008, 78, 48-55.	0.6	31
64	Hard cheese structure after a high hydrostatic pressure treatment at 50 MPa for 72 h applied to cheese after brining. Dairy Science and Technology, 2001, 81, 625-635.	0.9	31
65	Microbiological and Physico-Chemical Aspects in Dry-Salted Spanish Ham. Zentralblatt Für Mikrobiologie, 1988, 143, 475-482.	0.2	29
66	Electrophoretic Study of Casein Breakdown during Ripening of Goat's Milk Cheese. Journal of Agricultural and Food Chemistry, 1994, 42, 1546-1550.	2.4	29
67	Analysis of major ovine milk proteins by reversed-phase high-performance liquid chromatography and flow injection analysis with electrospray ionization mass spectrometry. Journal of Chromatography A, 2000, 870, 371-380.	1.8	29
68	Proteolysis in goat cheese made from raw, pasteurized or pressure-treated milk. Innovative Food Science and Emerging Technologies, 2002, 3, 309-319.	2.7	29
69	Proteolytic activities of some milk clotting enzymes on ovine casein. Food Chemistry, 2000, 71, 449-457.	4.2	28
70	High hydrostatic pressure treatment applied to model cheeses made from cow's milk inoculated with Staphylococcus aureus. Food Control, 2007, 18, 441-447.	2.8	28
71	Proteolysis of yogurts made from ultra-high-pressure homogenized milk during cold storage. Journal of Dairy Science, 2009, 92, 71-78.	1.4	28
72	Kinetics of destruction ofEscherichia coliandPseudomonas fluorescensinoculated in ewe's milk by high hydrostatic pressure. Food Microbiology, 1999, 16, 173-184.	2.1	27

#	Article	IF	CITATIONS
73	Proteolysis of goat casein by calf rennet. International Dairy Journal, 1997, 7, 579-588.	1.5	26
74	Inactivation of Listeria monocytogenes and Salmonella enterica serovar Senftenberg 775W inoculated into fruit juice by means of ultra high pressure homogenisation. Food Control, 2011, 22, 313-317.	2.8	26
75	Use of UHPH to Obtain Juices With Better Nutritional Quality and Healthier Wines With Low Levels of SO2. Frontiers in Nutrition, 2020, 7, 598286.	1.6	25
76	Effect of ultra-high pressure homogenisation of milk on the texture and water-typology of a starter-free fresh cheese. Innovative Food Science and Emerging Technologies, 2011, 12, 484-490.	2.7	24
77	Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures. Food Control, 2012, 25, 361-367.	2.8	24
78	Inactivation of two strains ofEscherichia coliinoculated into whole and skim milk by ultrahigh-pressure homogenisation. Dairy Science and Technology, 2006, 86, 241-249.	0.9	24
79	Behavior of Yersinia enterocolitica Strains Inoculated in Model Cheese Treated with High Hydrostatic Pressure. Journal of Food Protection, 2005, 68, 528-533.	0.8	23
80	White wine processing by UHPH without SO2. Elimination of microbial populations and effect in oxidative enzymes, colloidal stability and sensory quality. Food Chemistry, 2020, 332, 127417.	4.2	23
81	Ultra-high pressure homogenisation of milk: technological aspects of cheese-making and microbial shelf life of a starter-free fresh cheese. Journal of Dairy Research, 2012, 79, 168-175.	0.7	22
82	Effect of Compression and Decompression Rates of High Hydrostatic Pressure on Inactivation of Staphylococcus aureus in Different Matrices. Food and Bioprocess Technology, 2014, 7, 1202-1207.	2.6	22
83	Microbiological changes during ripening of Cendrat del Montsec, a goat's milk cheese. Food Microbiology, 1994, 11, 177-185.	2.1	21
84	Proteolysis Of Goat .betaCasein by Calf Rennet under Various Factors Affecting the Cheese Ripening Process. Journal of Agricultural and Food Chemistry, 1995, 43, 1472-1478.	2.4	21
85	Protein composition of caprine milk fat globule membrane. Small Ruminant Research, 2009, 82, 122-129.	0.6	21
86	Revisión: Irradiación de alimentos.—aspectos generales/Review: Food irradiation.—General aspects. Food Science and Technology International, 1996, 2, 1-11.	1.1	20
87	A procedure for the manufacture of goat milk cheese with controlled-microflora by means of high hydrostatic pressure. Food Chemistry, 2000, 69, 73-79.	4.2	20
88	Free fatty acid content of Manchego-type cheese salted by brine vacuum impregnation. International Dairy Journal, 2000, 10, 563-568.	1.5	20
89	Survival and growth of Yersinia enterocolitica strains inoculated in skimmed milk treated with high hydrostatic pressure. International Journal of Food Microbiology, 2005, 102, 337-342.	2.1	20
90	Influence of unicellular protein on gluten-free bread characteristics. European Food Research and Technology, 2010, 231, 171-179.	1.6	20

#	Article	IF	CITATIONS
91	Effect of inulin addition on the sensorial properties of reducedâ€fat fresh cheese. International Journal of Dairy Technology, 2013, 66, 478-483.	1.3	19
92	Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. Journal of Dairy Science, 2010, 93, 1412-1419.	1.4	18
93	Specific effect of high-pressure treatment of milk on cheese proteolysis. Journal of Dairy Research, 2005, 72, 385-392.	0.7	17
94	Lethality and injuring the effect of compression and decompression rates of high hydrostatic pressure on <i>Escherichia coli</i> O157:H7 in different matrices. High Pressure Research, 2013, 33, 64-72.	0.4	17
95	Ripening control of salt-reduced Manchego-type cheese obtained by brine vacuum-impregnation. Food Chemistry, 2000, 70, 155-162.	4.2	16
96	Lipolysis of cheeses made from goat milk treated by ultra-high pressure homogenization. LWT - Food Science and Technology, 2015, 60, 1034-1038.	2.5	16
97	Colour Changes During Ripening of High Pressure Treated Hard Caprine Cheese. High Pressure Research, 2002, 22, 659-663.	0.4	15
98	Effects of high-pressure treatment on free fatty acids release during ripening of ewes' milk cheese. Journal of Dairy Research, 2007, 74, 438-445.	0.7	15
99	Changes in the Volatile Composition of a Semihard Ewe Milk Cheese Induced by High-Pressure Treatment of 300 MPa. Journal of Agricultural and Food Chemistry, 2007, 55, 747-754.	2.4	15
100	Effect of the inclusion of whole citrus in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. Journal of Dairy Science, 2009, 92, 469-476.	1.4	14
101	Interrelationships between somatic cell counts, lactation stage and lactation number and their influence on plasmin activity and protein fraction distribution in dromedary (Camelus dromedaries) and cow milks. Small Ruminant Research, 2012, 105, 300-307.	0.6	14
102	Using a fiber optic sensor for cutting time prediction in cheese manufacture from a mixture of cow, sheep and goat milk. Journal of Food Engineering, 2014, 125, 157-168.	2.7	14
103	Inactivation of Mycobacterium avium subsp. paratuberculosis in Cow's Milk by Means of High Hydrostatic Pressure at Mild Temperatures. Applied and Environmental Microbiology, 2006, 72, 4446-4449.	1.4	13
104	Effectiveness of High-Pressure Brining of Manchego-type Cheese. LWT - Food Science and Technology, 2000, 33, 401-403.	2.5	12
105	Effect of heat treatment on lactoperoxidase activity in caprine milk. Small Ruminant Research, 2007, 67, 243-246.	0.6	12
106	Changes in water binding during ripening of cheeses made from raw, pasteurized or high-pressure-treated goat milk. Dairy Science and Technology, 2003, 83, 89-96.	0.9	12
107	A survey on the microbiological quality of a semi-soft on-farm manufactured goat cheese. Food Microbiology, 1992, 9, 345-352.	2.1	11
108	Cabernet Sauvignon Red Must Processing by UHPH to Produce Wine Without SO2: the Colloidal Structure, Microbial and Oxidation Control, Colour Protection and Sensory Quality of the Wine. Food and Bioprocess Technology, 2022, 15, 620-634.	2.6	10

#	Article	IF	CITATIONS
109	Evaluation of the importance of germinative cycles for destruction ofbacillus cereusspores in miniature cheeses. High Pressure Research, 2003, 23, 81-85.	0.4	9
110	Fate of Escherichia coli Strains Inoculated in Model Cheese Elaborated with or without Starter and Treated by High Hydrostatic Pressure. Journal of Food Protection, 2006, 69, 2856-2864.	0.8	9
111	Microbial inactivation by ultra high-pressure homogenisation on fresh apple juice. High Pressure Research, 2009, 29, 46-51.	0.4	6
112	White must preservation by ultra-high pressure homogenization without SO2. , 2022, , 49-59.		1
113	Alimentos irradiados. Arbor, 2001, 168, 129-153.	0.1	0