List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921278/publications.pdf Version: 2024-02-01

		686830	476904
122	1,261	13	29
papers	citations	h-index	g-index
123	123	123	862
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Models for early prediction of at-risk students in a course using standards-based grading. Computers and Education, 2016, 103, 1-15.	5.1	211
2	What is an Engineer? Implications of Elementary School Student Conceptions for Engineering Education. Journal of Engineering Education, 2011, 100, 304-328.	1.9	194
3	A preliminary validation of Attention, Relevance, Confidence and Satisfaction model-based Instructional Material Motivational Survey in a computer-based tutorial setting. British Journal of Educational Technology, 2006, 37, 243-259.	3.9	105
4	Engineering Identity Development Among Preâ€Adolescent Learners. Journal of Engineering Education, 2012, 101, 698-716.	1.9	85
5	The Effects of Integrated Science, Technology, and Engineering Education on Elementary Students' Knowledge and Identity Development. School Science and Mathematics, 2014, 114, 380-391.	0.5	40
6	Professional Development Through Engineering Academies: An Examination of Elementary Teachers' Recognition and Understanding of Engineering. Journal of Engineering Education, 2011, 100, 520-539.	1.9	39
7	A Framework for Analyzing Feedback in a Formative Assessment System for Mathematical Modeling Problems. Journal of Engineering Education, 2012, 101, 375-406.	1.9	37
8	First-Year Effects Of An Engineering Professional Development Program On Elementary Teachers. American Journal of Engineering Education, 2013, 4, 67-84.	0.4	24
9	Development of an Instrument to Measure Undergraduates' Nanotechnology Awareness, Exposure, Motivation, and Knowledge. Journal of Science Education and Technology, 2008, 17, 500-510.	2.4	20
10	The Development of a Systematic Coding System for Elementary Students' Drawings of Engineers. Journal of Pre-College Engineering Education Research, 2011, 1, .	0.3	19
11	Challenges to Informed Peer Review Matching Algorithms. Journal of Engineering Education, 2010, 99, 397-408.	1.9	15
12	Student Team Solutions to an Openâ€Ended Mathematical Modeling Problem: Gaining Insights for Educational Improvement. Journal of Engineering Education, 2013, 102, 179-216.	1.9	15
13	IN-SERVICE TEACHER PROFESSIONAL DEVELOPMENT IN ENGINEERING EDUCATION:. , 2014, , 233-258.		15
14	Young children's Perceptions of engineers before and after a summer engineering outreach course. Proceedings - Frontiers in Education Conference, FIE, 2007, , .	0.0	14
15	Two elementary schools' developing potential for sustainability of engineering education. International Journal of Technology and Design Education, 2016, 26, 309-334.	1.7	14
16	What is engineering? — An Exploration of P-6 grade teachers' perspectives. Proceedings - Frontiers in Education Conference, FIE, 2007, , .	0.0	11
17	Student reflections on peer reviewing solutions to Model-Eliciting Activities. , 2009, , .		10
18	Change in Elementary Student Conceptions of Engineering Following an Intervention as Seen from the Draw-an-Engineer Test. , 0, , .		10

#	Article	IF	CITATIONS
19	Model Eliciting Activities: An In Class Approach To Improving Interest And Persistence Of Women In Engineering. , 0, , .		10
20	Assessment of Team Effectiveness During Complex Mathematical Modeling Tasks. , 2006, , .		9
21	Generating measures of Engineering Identity Development among young learners. , 2009, , .		9
22	Relationship Between Time of Class and Student Grades in an Active Learning Course. Journal of Engineering Education, 2018, 107, 468-490.	1.9	9
23	Measuring the Effects of Integrating Engineering into the Elementary School Curriculum on Students' Science and Engineering Design Content Knowledge. , 0, , .		9
24	Nanotechnology Awareness of First-Year Food and Agriculture Students following a Brief Exposure. Journal of Natural Resources and Life Sciences Education, 2007, 36, 58-65.	0.3	8
25	Progression of student solutions over the course of a Model-Eliciting Activity (MEA). , 2010, , .		8
26	Undergraduate and graduate teaching assistants' perceptions of their responsibilities - Factors that help or hinder. , 2013, , .		8
27	Kirkpatrick's Level 1 Evaluation of the Implementation of a Computerâ€Aided Process Design Tool in a Seniorâ€Level Engineering Course. Journal of Engineering Education, 2004, 93, 321-331.	1.9	7
28	Socialization Experiences Resulting from Doctoral Engineering Teaching Assistantships. Journal of Higher Education, 2013, 84, 189-212.	1.9	7
29	Faculty perception before, during and after implementation of standards-based grading. Australasian Journal of Engineering Education, 2018, 23, 53-61.	0.2	7
30	Meaningful Learner Information for MOOC Instructors Examined Through a Contextualized Evaluation Framework. International Review of Research in Open and Distance Learning, 2019, 20, .	1.0	7
31	First Year Engineering Themed Seminar – A Mechanism For Conveying The Interdisciplinary Nature Of Engineering. , 0, , .		7
32	Broadening K-8 Teachers' Perspectives on Professional Development in Engineering Integration in the United States. International Journal of Research in Education and Science, 0, , 331-348.	0.8	7
33	Best Practices for Using Standards-based Grading in Engineering Courses. , 0, , .		7
34	Engineering a professional community of practice for graduate students in engineering education. , 2006, , .		6
35	Work in progress — Interpreting elementary students' advanced conceptions of engineering from the Draw-an-Engineer Test. , 2011, , .		6
36	Integrating analytics and surveys to understand fully engaged learners in a highly-technical STEM		6

MOOC. , 2016, , .

#	Article	IF	CITATIONS
37	A Size and Scale Framework for Guiding Curriculum Design and Assessment. Journal of Engineering Education, 2017, 106, 431-453.	1.9	6
38	Factors That Help and Hinder Teaching Assistantsâ \in ™ Ability to Execute Their Responsibilities. , 0, , .		6
39	A New Framework For Academic Reform In Engineering Education. , 0, , .		6
40	The Nature of Peer Feedback from First-year Engineering Students on Open-ended Mathematical Modeling Problems. , 0, , .		6
41	Introducing engineering in elementary education: A 5â€year study of teachers and students. British Journal of Educational Technology, 2015, 46, 1015-1019.	3.9	5
42	Surveying the motivations of groups of learners in highly-technical STEM MOOCs. , 2016, , .		5
43	Student Reflection to Improve Access to Standards-Based Grading Feedback. , 2018, , .		5
44	Development Of Graduate Programs In Engineering Education. , 0, , .		5
45	The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems. International Journal of Research in Education and Science, 2015, 2, 239.	0.8	5
46	Students' Perceptions of and Responses to Teaching Assistant and Peer Feedback. Interdisciplinary Journal of Problem-based Learning, 2014, 9, .	0.2	5
47	Reflection types and students' viewing of feedback in a firstâ€year engineering course using standardsâ€based grading. Journal of Engineering Education, 2022, 111, 283-307.	1.9	5
48	Does A Successful Mathematics Bridge Program Make For Successful Students?. , 0, , .		5
49	Problem Formulation within Open-ended Problems: Looking through the Structure-Behavior-Function (SBF) and Novice-Expert (NE) Frameworks. Procedia, Social and Behavioral Sciences, 2012, 56, 160-174.	0.5	4
50	Enhanced Learning of Mechanical Behavior of Materials via Combined Experiments and nanoHUB Simulations: Learning Modules for Sophomore MSE Students. Materials Research Society Symposia Proceedings, 2015, 1762, 31.	0.1	4
51	Student self-reported use of standards-based grading resources and feedback. European Journal of Engineering Education, 2019, 44, 838-849.	1.5	4
52	Cases of Student Reflection within a Course Using Standards-Based Grading. , 2019, , .		4
53	Written feedback provided by first-year engineering students, undergraduate teaching assistants, and educators on design project work. European Journal of Engineering Education, 2019, 44, 179-195.	1.5	4
54	Graduate Teaching Assistant Written Feedback on Student Responses to Problem Identification		4

Questions within an Authentic Engineering Problem. , 0, , .

#	Article	IF	CITATIONS
55	A Teaching Assistant Training Protocol for Improving Feedback on Open-Ended Engineering Problems in Large Classes. , 0, , .		4
56	Students and Engineering Educators' Feedback on Design. , 2015, , 26.1430.1.		3
57	First-year engineering students' peer feedback on open-ended mathematical modeling problems. , 2012, ,		3
58	First-Year Engineering Students' Portrayal of Engineering in a Proposed Museum Exhibit for Middle School Students. Journal of Science Education and Technology, 2012, 21, 304-316.	2.4	3
59	Selecting Effective Examples to Train Students for Peer Review of Openâ€Ended Problem Solutions. Journal of Engineering Education, 2016, 105, 585-604.	1.9	3
60	Instructor outcomes of teaching a STEM MOOC. , 2017, , .		3
61	Grader Consistency in using Standards-based Rubrics. , 0, , .		3
62	First-Year Engineering Students' Learning of Nanotechnology through an Open-Ended Project. , 0, , .		3
63	Standards-Based Grading Derived Data to Monitor Grading and Student Learning. , 0, , .		3
64	Validation of an Instrument to Measure Student Engagement with a Standards-Based Grading System. , 0, , .		3
65	Special Session: Next Generation Problem Solving: Results To Date Models And Modeling Using Meas. , 0, , .		3
66	Work in progress — Using multiple methods to investigate the role of feedback in open-ended activities. , 2011, , .		2
67	Development and validation of a Nano Size and Scale Instrument (NSSI). , 2014, , .		2
68	Student reflections on standards-based graded assignments. , 2016, , .		2
69	Synthesis of clustering techniques in educational data mining. , 0, , .		2
70	K-8 Teachers' Responses to Their First Professional Development Experience in Engineering. , 0, , .		2
71	Elementary School Teachers' Attempts at Integrating Engineering Design: Transformation or Assimilation?. , 0, , .		2
72	Feedback and Assessment of Student Work on Model-Eliciting Activities: Undergraduate Teaching Assistants' Perceptions and Strategies. , 0, , .		2

#	Article	IF	CITATIONS
73	A First Take on an Individual Data Generation Assignment for Open-ended Mathematical Modeling Problems. , 0, , .		2
74	Student Responses to and Perceptions of Feedback Received on a Series of Model-Eliciting Activities: A Case Study. , 0, , .		2
75	Development and Assessment of an Undergraduate Curriculum for First-Year International Engineering Students. , 2006, , .		1
76	Graduate Students' Evolving Ideas on Engineering Education and Engineering Educators. , 2006, , .		1
77	Mini workshop — A strategy for assessing student work on open-ended problems. , 2011, , .		1
78	Work in progress: Analysis of change in engineering construct knowledge. , 2012, , .		1
79	Work in progress: Changes in elementary teachers' Noticing of engineering Pre/Post professional development with engineering. , 2012, , .		1
80	Transforming the First-Year Engineering Experience through Authentic Problem-Solving: Taking a Models and Modeling Perspective. Procedia, Social and Behavioral Sciences, 2012, 56, 314-332.	0.5	1
81	First-Year students' understanding of direct user in open-ended problem solving activities. , 2013, , .		1
82	Influence of teaching assistants' motivation on student learning. , 2014, , .		1
83	First-year engineering students' self-reported knowledge of nanotechnology — The development of a coding scheme. , 2014, , .		1
84	Use of the TRB Research Needs Statements Database in an Introductory Transportation Course. Transportation Research Record, 2017, 2614, 10-17.	1.0	1
85	Utilizing visualization and feature selection methods to identify important learning objectives in a course. , 2017, , .		1
86	Using pre-course survey responses to predict sporadic learner behaviors in advanced STEM MOOCs work-in-progress. , 2017, , .		1
87	The Continuing Effort to Enhanced Learning of Mechanical Behavior of Materials via Combined Experiments and nanoHUB Simulations: Learning Modules for Sophomore MSE Students. MRS Advances, 2016, 1, 3721-3726.	0.5	1
88	"Engineering Teaches Problem Solving": Teachers' Perceptions of Student Learning through Engineering Lessons. , 0, , .		1
89	Characterization of Techniques used in Industry: The Practice of Complex Problem Solving in Engineering. , 0, , .		1
90	Elementary Teachers' Two-Year Implementation of Engineering: A Case of Success. , 0, , .		1

6

#	Article	IF	CITATIONS
91	Examining the Skills and Methods of Graduate Student Mentors in an Undergraduate Research Setting. , 0, , .		1
92	Drag The Green Ion An Interactive Online Quantitative Cellular Biology Learning Module. , 0, , .		1
93	You May be Able to Teach Early Classes, but Students May Not be Awake Yet!. , 0, , .		1
94	Changes in Elementary Students' Engineering Knowledge Over Two Years of Integrated Science Instruction (Research to Practice). , 0, , .		1
95	Doctoral Students as Course Instructors: Three Engineering Teaching Assistants' Socialization Experiences. , 0, , .		1
96	Evaluating Student Responses in Open-Ended Problems Involving Iterative Solution Development in Model-Eliciting Activities. , 0, , .		1
97	Workshop Guided Peer Feedback for Improved Student Team Responses to Open-Ended Engineering Problems. , 2006, , .		0
98	Work in progress: First-year engineering students development of test cases for model development. , 2012, , .		0
99	Case studies: First-Year engineering nanotechnology-based design projects. , 2013, , .		0
100	First-year engineering students' nanotechnology awareness, exposure and motivation before and after educational interventions. , 2014, , .		0
101	Mini workshop — Developing engineers for a changing world through modeling and simulation-based pedagogy. , 2014, , .		0
102	Student peer feedback on design. , 2014, , .		0
103	There's more than one way to analyze feedback on design. , 2015, , .		0
104	Engineers' written feedback on design. , 2016, , .		0
105	Board # 29 :Research Needs Statements for Project Topic Selection: A Pilot Study in an Undergraduate Civil Engineering Transportation Course. , 0, , .		0
106	Board 22: Enhancing Minority Middle School Student Knowledge, Literacy, and Motivation in STEM Using Culturally Relevant Contexts. , 0, , .		0
107	First-Year Engineering Students' Reflections: Plans and Actions for Meeting Course Learning Objectives. , 2021, , .		0
108	Conceptual Understanding of the Electrical Concepts of Voltage and Current: A Pilot Study of a Method to Create Representations of Students' Mental Models. , 0, , .		0

#	Article	IF	CITATIONS
109	Web Based Technology For Long Term Program Assessment. , 0, , .		0
110	A Comprehensive Beginning Engineering Student Assessment Program. , 0, , .		0
111	Laptops In The Lecture To Promote Active Learning. , 0, , .		0
112	Tips For Teaching Obscenely Large Lectures. , 0, , .		0
113	Implementing Change: A Model For Closing The Continuous Improvement Loop The First Time And Every Time. , 0, , .		0
114	Boys and Girls Engineering Identity Development in Early Elementary. , 0, , .		0
115	Effects of Continuous Teacher Professional Development in Engineering on Elementary Teachers. , 0, ,		0
116	First-Year Engineering Students' Communication of Nanotechnology Size & Scale in a Design Challenge. , 0, , .		0
117	First-Year Engineering Team Responses to Feedback on Their Mathematical Models - A Video Study. , 0, , .		0
118	Understanding Grader Reliability through the Lens of Cognitive Modeling. , 0, , .		0
119	Pre Eminence In First Year Engineering Programs. , 0, , .		0
120	A Coding Scheme for Measuring Biomedical Engineering Students' Breadth of Exposure to the Discipline. , 0, , .		0
121	Board # 32 : NSF PRIME Project: Contextualized Evaluation of Advanced STEM MOOCs. , 0, , .		0
122	Realistic Open-Ended Engineering Problem Solving as Sites for Postdoctoral Researcher Training in Course Instruction and Development. , 0, , .		0