Tomas Pospisil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921104/publications.pdf Version: 2024-02-01

TOMAS POSDISI

#	Article	IF	CITATIONS
1	3,5,7-Substituted Pyrazolo[4,3- <i>d</i>]Pyrimidine Inhibitors of Cyclin-Dependent Kinases and Cyclin K Degraders. Journal of Medicinal Chemistry, 2022, 65, 8881-8896.	2.9	14
2	Synthesis of Simple Strigolactone Mimics. Methods in Molecular Biology, 2021, 2309, 31-36.	0.4	1
3	GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells. Frontiers in Plant Science, 2021, 12, 675981.	1.7	9
4	Caged Phytohormones: From Chemical Inactivation to Controlled Physiological Response. Journal of Agricultural and Food Chemistry, 2021, 69, 12111-12125.	2.4	7
5	Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry, 2020, 155, 965-979.	2.8	43
6	New hybrid type strigolactone mimics derived from plant growth regulator auxin. New Biotechnology, 2019, 48, 76-82.	2.4	12
7	6-Substituted purines as ROCK inhibitors with anti-metastatic activity. Bioorganic Chemistry, 2019, 90, 103005.	2.0	7
8	3,5,7-Substituted Pyrazolo[4,3- <i>d</i>]pyrimidine Inhibitors of Cyclin-Dependent Kinases and Their Evaluation in Lymphoma Models. Journal of Medicinal Chemistry, 2019, 62, 4606-4623.	2.9	16
9	A New Hyaluronan Modified with β-Cyclodextrin on Hydroxymethyl Groups Forms a Dynamic Supramolecular Network. Molecules, 2019, 24, 3849.	1.7	4
10	Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale, 2018, 10, 4696-4707.	2.8	55
11	Total synthesis of [¹⁵ N]-labelled C6-substituted purines from [¹⁵ N]-formamide—easy preparation of isotopically labelled cytokinins and derivatives. Royal Society Open Science, 2018, 5, 181322.	1.1	6
12	Functional Analysis of Novicidin Peptide: Coordinated Delivery System for Zinc via Schiff Base Ligand. Bioconjugate Chemistry, 2018, 29, 2954-2969.	1.8	2
13	Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry, 2017, 135, 115-127.	1.4	7
14	Activity of (+)-Discadenine as a Plant Cytokinin. Journal of Natural Products, 2017, 80, 2136-2140.	1.5	11
15	Synthesis of strigolactones, a strategic account. Pest Management Science, 2016, 72, 15-29.	1.7	55
16	Stable isotope dilution ultra-high performance liquid chromatography–tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid. Journal of Chromatography A, 2016, 1437, 145-157.	1.8	43
17	Strigolactones: new plant hormones in action. Planta, 2016, 243, 1311-1326.	1.6	95
18	5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases. European Journal of Medicinal Chemistry, 2016, 110, 291-301.	2.6	29

TOMAS POSPISIL

#	Article	IF	CITATIONS
19	Comparison of nano and conventional liquid chromatographic methods for the separation of (+)-catechin-ethyl-malvidin-3-glucoside diastereoisomers. Journal of Chromatography A, 2016, 1428, 126-133.	1.8	9
20	2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis. PLoS ONE, 2016, 11, e0159269.	1.1	31
21	Frontispiece: Rotaxanes Capped with Host Molecules: Supramolecular Behavior of Adamantylated Bisimidazolium Salts Containing a Biphenyl Centerpiece. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0
22	N-acyl-ï‰-aminoaldehydes are efficient substrates of plant aminoaldehyde dehydrogenases. Amino Acids, 2015, 47, 175-187.	1.2	3
23	Rotaxanes Capped with Host Molecules: Supramolecular Behavior of Adamantylated Bisimidazolium Salts Containing a Biphenyl Centerpiece. Chemistry - A European Journal, 2015, 21, 11712-11718.	1.7	15
24	Determination of free diferulic, disinapic and dicoumaric acids in plants and foods. Food Chemistry, 2015, 171, 280-286.	4.2	16
25	Structure and Activity of Strigolactones: New Plant Hormones with a Rich Future. Molecular Plant, 2013, 6, 38-62.	3.9	182
26	Synthesis and inÂvitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases. European Journal of Medicinal Chemistry, 2013, 61, 61-72.	2.6	36
27	Tissueâ€specific profiling of the <i>Arabidopsis thaliana</i> auxin metabolome. Plant Journal, 2012, 72, 523-536.	2.8	277
28	Simple and Efficient Synthesis of N-Nitroethylenediamine Derivatives. Synlett, 2011, 2011, 1168-1170.	1.0	0
29	Photoenolization-Induced Oxirane Ring Opening in 2,5-Dimethylbenzoyl Oxiranes To Form Pharmaceutically Promising Indanone Derivatives. Journal of Organic Chemistry, 2010, 75, 7300-7309.	1.7	27
30	A general approach to homochiral α-amino substituted bromo-heteroaromatics suitable for two-dimensional rapid analogue synthesis. Tetrahedron, 2009, 65, 9487-9493.	1.0	10
31	Photochemical synthesis of substituted indan-1-ones related to donepezil. Photochemical and Photobiological Sciences, 2008, 7, 625-632.	1.6	12
32	Sulfoxide-Modified Julia-Lythgoe Olefination: Highly Stereoselective Di-, Tri-, and Tetrasubstituted Double Bond Formation. Collection of Czechoslovak Chemical Communications, 2005, 70, 1953-1969.	1.0	10
33	Sulfoxides in Juliaâ^'Lythgoe Olefination:  Efficient and Stereoselective Preparation of Di-, Tri-, and Tetrasubstituted Olefins. Organic Letters, 2005, 7, 2373-2376.	2.4	63
34	Small Molecules That Mimic the Thiol-Triggered Alkylating Properties Seen in the Natural Product Leinamycin. Journal of the American Chemical Society, 2003, 125, 4996-4997.	6.6	43
35	2,5-Dimethylphenacyl esters: A photoremovable protecting group for phosphates and sulfonic acids. Photochemical and Photobiological Sciences, 2002, 1, 920-923.	1.6	40