Wenyao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8920803/publications.pdf

Version: 2024-02-01

91712 66234 5,084 108 42 69 citations h-index g-index papers 109 109 109 7211 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hierarchical mesoporous NiCo2O4@MnO2 coreâ€"shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 4795.	5.2	355
2	Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale, 2014, 6, 3274.	2.8	239
3	S, Nâ€Coâ€Doped Grapheneâ€Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. Advanced Science, 2017, 4, 1600214.	5.6	204
4	Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1â^'x(OH)2 coreâ€"shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10090.	5.2	174
5	One pot synthesis of nickel foam supported self-assembly of NiWO ₄ and CoWO ₄ nanostructures that act as high performance electrochemical capacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 14272-14278.	5.2	167
6	Hydrophilic Molybdenum Oxide Nanomaterials with Controlled Morphology and Strong Plasmonic Absorption for Photothermal Ablation of Cancer Cells. ACS Applied Materials & Diterfaces, 2014, 6, 3915-3922.	4.0	166
7	MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy, 2014, 7, 72-79.	8.2	150
8	Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO ₂ @MnO ₂ core/shell nanostructures for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6168-6176.	5.2	138
9	A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes. Advanced Functional Materials, 2018, 28, 1705937.	7.8	138
10	Facile synthesis of porous MnCo ₂ O _{4.5} hierarchical architectures for high-rate supercapacitors. CrystEngComm, 2014, 16, 2335-2339.	1.3	131
11	MnMoO ₄ ·4H ₂ O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. Journal of Materials Chemistry A, 2014, 2, 20723-20728.	5.2	111
12	Hierarchical heterostructures of MnO2 nanosheets or nanorods grown on Au-coated Co3O4 porous nanowalls for high-performance pseudocapacitance. Nanoscale, 2013, 5, 2901.	2.8	108
13	Effect of temperature on the performance of ultrafine MnO ₂ nanobelt supercapacitors. Journal of Materials Chemistry A, 2014, 2, 1443-1447.	5.2	108
14	MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry, 2012, 22, 14864.	6.7	101
15	Self-assembling hybrid NiO/Co3O4 ultrathin and mesoporous nanosheets into flower-like architectures for pseudocapacitance. Journal of Materials Chemistry A, 2013, 1, 9107.	5.2	101
16	Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochimica Acta, 2015, 157, 108-114.	2.6	96
17	Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 7304-7313.	5.2	95
18	Phase-controlled synthesis and gas-sensing properties of zinc stannate (ZnSnO3 and Zn2SnO4) faceted solid and hollow microcrystals. CrystEngComm, 2012, 14, 2172.	1.3	89

#	Article	IF	CITATIONS
19	Structure-designed synthesis of hierarchical NiCo2O4@NiO composites for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 556, 386-391.	5.0	88
20	Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals. Materials Research Bulletin, 2013, 48, 2325-2332.	2.7	87
21	3D core/shell hierarchies of MnOOH ultrathin nanosheets grown on NiO nanosheet arrays for high-performance supercapacitors. Nano Energy, 2014, 4, 56-64.	8.2	83
22	Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. Journal of Materials Chemistry A, 2017, 5, 4352-4358.	5.2	76
23	The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance. Advanced Science, 2020, 7, 1903674.	5.6	73
24	Facile synthesis of maguey-like CuCo2O4 nanowires with high areal capacitance for supercapacitors. Journal of Alloys and Compounds, 2017, 695, 3503-3510.	2.8	72
25	Understanding the effect of polypyrrole and poly(3,4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo ₂ O ₄ electrodes. Journal of Materials Chemistry A, 2014, 2, 16731-16739.	5.2	70
26	Sponge-like NiCo ₂ O ₄ /MnO ₂ ultrathin nanoflakes for supercapacitor with high-rate performance and ultra-long cycle life. Journal of Materials Chemistry A, 2014, 2, 7738-7741.	5.2	69
27	Ni(OH) ₂ /CoO/reduced graphene oxide composites with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 478-481.	5.2	68
28	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	2.8	61
29	High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode. Journal of Power Sources, 2022, 521, 230941.	4.0	60
30	Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomaterials Science, 2017, 5, 77-88.	2.6	59
31	Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries. Electrochemical Energy Reviews, 2021, 4, 793-823.	13.1	59
32	Design and synthesis of 3D hierarchical NiCo ₂ S ₄ @MnO ₂ coreâ€"shell nanosheet arrays for high-performance pseudocapacitors. RSC Advances, 2015, 5, 44642-44647.	1.7	57
33	Carbon-Decorated Na ₃ V ₂ (PO ₄) ₃ as Ultralong Lifespan Cathodes for High-Energy-Density Symmetric Sodium-Ion Batteries. ACS Applied Materials & 2021, 13, 25036-25043.	4.0	55
34	ZIF-8-Derived Hollow Carbon for Efficient Adsorption of Antibiotics. Nanomaterials, 2019, 9, 117.	1.9	54
35	Core–shell TiO ₂ @C ultralong nanotubes with enhanced adsorption of antibiotics. Journal of Materials Chemistry A, 2019, 7, 19081-19086.	5.2	53
36	Exceptional pseudocapacitive properties of hierarchical NiO ultrafine nanowires grown on mesoporous NiO nanosheets. Journal of Materials Chemistry A, 2014, 2, 12799-12804.	5.2	52

#	Article	IF	Citations
37	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	9.5	52
38	Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochimica Acta, 2020, 330, 135236.	2.6	49
39	MnO ₂ Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors. ChemElectroChem, 2014, 1, 1003-1008.	1.7	48
40	$CoMoO < sub > 4 < / sub > \hat{A} \cdot 0.9 H < sub > 2 < / sub > O \ nanorods \ grown \ on \ reduced \ graphene \ oxide \ as \ advanced \ electrochemical \ pseudocapacitor \ materials. \ RSC \ Advances, \ 2014, \ 4, \ 34307.$	1.7	46
41	Carbon-coated mesoporous NiO nanoparticles as an electrode material for high performance electrochemical capacitors. New Journal of Chemistry, 2013, 37, 4031.	1.4	44
42	Facile synthesis of 3D flower-like porous NiO architectures with an excellent capacitance performance. RSC Advances, 2015, 5, 47506-47510.	1.7	42
43	Hydrogels that couple nitrogen-enriched graphene with Ni(OH)2 nanosheets for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 782, 516-524.	2.8	42
44	Hollow Cu-doped NiO microspheres as anode materials with enhanced lithium storage performance. RSC Advances, 2019, 9, 20963-20967.	1.7	37
45	Highly ordered mesoporous NiCo ₂ O ₄ with superior pseudocapacitance performance for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11503-11510.	5.2	36
46	Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. Composites Part B: Engineering, 2021, 220, 108986.	5.9	35
47	MoS2/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution. Journal of Power Sources, 2020, 472, 228497.	4.0	33
48	Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants. Applied Surface Science, 2021, 550, 149313.	3.1	33
49	Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser. Applied Surface Science, 2020, 520, 146316.	3.1	28
50	Phosphorus-bridged ternary metal alloy encapsulated in few-layered nitrogen-doped graphene for highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 7111-7121.	5.2	28
51	Magnetic-field-assisted hydrothermal synthesis of 2 \tilde{A} — 2 tunnels of MnO ₂ nanostructures with enhanced supercapacitor performance. CrystEngComm, 2014, 16, 9987-9991.	1.3	27
52	NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Materials Letters, 2014, 114, 40-43.	1.3	27
53	CuS hierarchical hollow microcubes with improved visible-light photocatalytic performance. RSC Advances, 2015, 5, 98136-98143.	1.7	25
54	Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes. Electrochimica Acta, 2015, 186, 1-6.	2.6	24

#	Article	IF	Citations
55	Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors. Nanoscale Research Letters, 2016, 11, 469.	3.1	24
56	Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. Small Science, 2021, 1, 2100032.	5.8	24
57	MnO2-graphene based composites for supercapacitors: Synthesis, performance and prospects. Journal of Alloys and Compounds, 2022, 914, 165343.	2.8	23
58	A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance. Applied Surface Science, 2015, 357, 1747-1752.	3.1	22
59	Flexible all-solid-state supercapacitors based on PPy/rGO nanocomposite on cotton fabric. Nanotechnology, 2021, 32, 305401.	1.3	22
60	Electrospun nanoyarn and exosomes of adipose-derived stem cells for urethral regeneration: Evaluations in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112218.	2.5	22
61	A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Applied Surface Science, 2016, 362, 163-168.	3.1	20
62	A bi-layered tubular scaffold for effective anti-coagulant in vascular tissue engineering. Materials and Design, 2020, 194, 108943.	3.3	20
63	Substantially reduced crystallization temperature of SBA-15 mesoporous silica in NaNO3 molten salt. Materials Letters, 2016, 170, 179-182.	1.3	19
64	Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy and Environment, 2020, 5, 506-512.	4.7	19
65	CoMn phosphide encapsulated in nitrogen-doped graphene for electrocatalytic hydrogen evolution over a broad pH range. Chemical Communications, 2021, 57, 2400-2403.	2.2	19
66	Multifunctional polymer composites reinforced by carbon nanotubesâ€"Alumina hybrids with urchin-like structure. Materials Today Communications, 2017, 11, 94-102.	0.9	18
67	Flurbiprofen axetil loaded coaxial electrospun poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (characterization, and antiâ€adhesion activity. Journal of Applied Polymer Science, 2015, 132, .	pyrrolidon 1.3	e)–nanop 15
68	A controllable hydrothermal synthesis of uniform three-dimensional hierarchical microstructured ZnO films. CrystEngComm, 2011, 13, 6107.	1.3	14
69	A facile approach to prepare shell/core nanofibers for drug controlled release. Materials Letters, 2015, 150, 52-54.	1.3	14
70	Hierarchical MoO3/MnO2 core-shell nanostructures with enhanced pseudocapacitive properties. Journal of Alloys and Compounds, 2017, 725, 373-378.	2.8	14
71	Design and synthesis of porous TiO2@C nanotube bundles with enhanced supercapacitive performance. Ceramics International, 2017, 43, 2876-2880.	2.3	14
72	Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO2 Nanofibers by Electrospinning for Lithium Ion Batteries. Materials, 2019, 12, 2630.	1.3	13

#	Article	IF	CITATIONS
73	Bifunctional Microcapsules with n-Octadecane/Thyme Oil Core and Polyurea Shell for High-Efficiency Thermal Energy Storage and Antibiosis. Polymers, 2020, 12, 2226.	2.0	13
74	Synthesis of Prussian Blue Nanoparticles and Their Antibacterial, Antiinflammation and Antitumor Applications. Pharmaceuticals, 2022, 15, 769.	1.7	13
75	Ethanol gas sensor based on a self-supporting hierarchical SnO ₂ nanorods array. CrystEngComm, 2015, 17, 1800-1804.	1.3	12
76	Synthesis and characterization of flurbiprofen axetil-loaded electrospun MgAl-LDHs/poly(lactic-co-glycolic acid) composite nanofibers. RSC Advances, 2015, 5, 69423-69429.	1.7	12
77	Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors. Nanotechnology, 2021, 32, 195405.	1.3	12
78	Humid atmospheric pressure plasma jets exposed micro-defects on CoMoO ₄ nanosheets with enhanced OER performance. Chemical Communications, 2019, 55, 9432-9435.	2.2	11
79	S-doped graphene/mixed-valent manganese oxides composite electrode with superior performance for supercapacitors. Journal of Alloys and Compounds, 2020, 819, 152970.	2.8	11
80	Porous structured cotton-based ACF for the adsorption of benzen. Chemosphere, 2021, 282, 131110.	4.2	11
81	Comprehending the effect of MMoO $<$ sub $>4sub> (M = Co, Ni) nanoflakes on improving the electrochemical performance of NiO electrodes. Dalton Transactions, 2015, 44, 21131-21140.$	1.6	9
82	Molten salt synthesis of Zn 1.8 Mn 0.2 SiO 4 luminescent materials in NaCl–ZnCl 2 eutectic salt. Ceramics International, 2016, 42, 7852-7856.	2.3	9
83	A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles. Polymers, 2020, 12, 285.	2.0	9
84	The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 729-738.	1.2	8
85	New Insight into the Mechanism of Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid with Graphene Encapsulated CoFe Alloys Electrochemical Sensor. Advanced Materials Interfaces, 2022, 9, .	1.9	8
86	Hierarchical architectures of Co ₃ O ₄ ultrafine nanowires grown on Co ₃ O ₄ nanowires with fascinating electrochemical performance. New Journal of Chemistry, 2016, 40, 377-384.	1.4	7
87	Battery Electrodes: A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes (Adv. Funct. Mater. 23/2018). Advanced Functional Materials, 2018, 28, 1870154.	7.8	7
88	Facile Synthesis of Novel V0.13Mo0.87O2.935 Nanowires With High-Rate Supercapacitive Performance. Frontiers in Chemistry, 2019, 7, 595.	1.8	7
89	Design of Rugby-Like GeO ₂ Grown on Carbon Cloth as a Flexible Anode for High-Performance Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2019, 19, 263-267.	0.9	7
90	Interfacial engineering of reduced graphene oxide for high-performance supercapacitor materials. Journal of Electroanalytical Chemistry, 2020, 878, 114679.	1.9	7

#	Article	IF	CITATIONS
91	Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites. Optical Materials, 2017, 72, 529-532.	1.7	6
92	An electrochemical biosensor of Sn@C derived from ZnSn(OH)6 for sensitive determination of acetaminophen. Microchemical Journal, 2022, 175, 107128.	2.3	6
93	Hydrogen Evolution: The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance (Adv. Sci. 12/2020). Advanced Science, 2020, 7, 2070067.	5.6	5
94	Concentration dependent structure evolution and electrical properties of MnO 2 nanostructures. Materials Letters, 2016, 165, 200-204.	1.3	4
95	Uniform NiO nanoparticles used as anodes in Li-ion batteries. IOP Conference Series: Materials Science and Engineering, 0, 490, 022063.	0.3	4
96	Loofah Activated Carbon Sodium Alginate Hydrogel Microspheres with High Efficiency Cyclic Adsorption for Antibiotic Contaminants. Journal of Nanoelectronics and Optoelectronics, 2020, 15, 219-225.	0.1	4
97	A Review on Adsorption of Organic Pollutants from Water by UiO-67 and Its Derivatives. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1861-1873.	0.1	4
98	Cover Picture: MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors		