
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8920480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Survey of [CLC][ITAL]z[/ITAL][/CLC] > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at [CLC][ITAL]z[/ITAL][/CLC] â^¼â€‰6. Astrono Journal, 2001, 122, 2833-2849.	e om ica l	791
2	A Survey of [CLC][ITAL]z[/ITAL][/CLC] ] 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Thre Additional Quasars at [CLC][ITAL]z[/ITAL][/CLC] ] 6. Astronomical Journal, 2003, 125, 1649-1659.	²⁰ 4.7	654
3	Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. Astrophysical Journal, 2017, 835, 165.	4.5	371
4	Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the â€~final au problem'. Monthly Notices of the Royal Astronomical Society, 2017, 464, 946-954.	4.4	335
5	Destruction of Molecular Hydrogen during Cosmological Reionization. Astrophysical Journal, 1997, 476, 458-463.	4.5	312
6	The Radiative Feedback of the First Cosmological Objects. Astrophysical Journal, 2000, 534, 11-24.	4.5	306
7	Secondâ€Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104K. Astrophysical Journal, 2002, 569, 558-572.	4.5	294
8	Cosmological Formation of Low-Mass Objects. Astrophysical Journal, 1996, 464, 523.	4.5	285
9	The Assembly of the First Massive Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 27-97.	24.3	264
10	BINARY BLACK HOLE ACCRETION FROM A CIRCUMBINARY DISK: GAS DYNAMICS INSIDE THE CENTRAL CAVITY. Astrophysical Journal, 2014, 783, 134.	4.5	254
11	Supermassive black hole formation by direct collapse: keeping protogalactic gas H ₂ free in dark matter haloes with virial temperatures <i>T</i> _{vir} > <i>rsim</i> â€f <i>10⁴</i> K. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1249-1262.	4.4	242
12	Observational Signatures of the First Quasars. Astrophysical Journal, 1998, 503, 505-517.	4.5	232
13	THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS. Astrophysical Journal, 2009, 696, 1798-1822.	4.5	230
14	Photoionization Feedback in Lowâ€Mass Galaxies at High Redshift. Astrophysical Journal, 2004, 601, 666-675.	4.5	225
15	THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 700, 1952-1969.	4.5	224
16	Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1961-1972.	4.4	221
17	Signatures of Stellar Reionization of the Universe. Astrophysical Journal, 1997, 483, 21-37.	4.5	207
18	Formation and Evolution of Compact-object Binaries in AGN Disks. Astrophysical Journal, 2020, 898, 25.	4.5	207

#	Article	IF	CITATIONS
19	The Reionization History at High Redshifts. I. Physical Models and New Constraints from Cosmic Microwave Background Polarization. Astrophysical Journal, 2003, 595, 1-12.	4.5	197
20	Can Supermassive Black Holes Form in Metalâ€enriched Highâ€Redshift Protogalaxies?. Astrophysical Journal, 2008, 686, 801-814.	4.5	197
21	The Thermal Memory of Reionization History. Astrophysical Journal, 2003, 596, 9-18.	4.5	195
22	Photodissociation of H2 in protogalaxies: modelling self-shielding in three-dimensional simulations. Monthly Notices of the Royal Astronomical Society, 2011, 418, 838-852.	4.4	185
23	Accretion into the central cavity of a circumbinary disc. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2997-3020.	4.4	185
24	Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO. Astrophysical Journal, 2018, 866, 66.	4.5	184
25	Redshifting rings of power. Physical Review D, 2003, 68, .	4.7	179
26	A population of short-period variable quasars from PTF as supermassive black hole binary candidates. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2145-2171.	4.4	168
27	Hierarchical Black Hole Mergers in Active Galactic Nuclei. Physical Review Letters, 2019, 123, 181101.	7.8	167
28	THE MIGRATION OF GAP-OPENING PLANETS IS NOT LOCKED TO VISCOUS DISK EVOLUTION. Astrophysical Journal Letters, 2014, 792, L10.	8.3	148
29	Hyper-Eddington accretion flows on to massive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3738-3755.	4.4	148
30	The Merger History of Supermassive Black Holes in Galaxies. Astrophysical Journal, 2001, 558, 535-542.	4.5	147
31	Constraining the Lifetime of Quasars from Their Spatial Clustering. Astrophysical Journal, 2001, 547, 27-38.	4.5	141
32	A Limit from the Xâ€Ray Background on the Contribution of Quasars to Reionization. Astrophysical Journal, 2004, 613, 646-654.	4.5	135
33	Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization. Astrophysical Journal, 2003, 583, 24-32.	4.5	132
34	On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5672-5683.	4.4	128
35	Quasar Strömgren Spheres Before Cosmological Reionization. Astrophysical Journal, 2000, 542, L75-L78.	4.5	128
36	Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift. Astrophysical Journal, 2004, 613, 36-40.	4.5	127

#	Article	IF	CITATIONS
37	Finding the Electromagnetic Counterparts of Cosmological Standard Sirens. Astrophysical Journal, 2006, 637, 27-37.	4.5	126
38	H 2 Cooling of Primordial Gas Triggered by UV Irradiation. Astrophysical Journal, 1996, 467, 522.	4.5	126
39	Extended Lyα Emission around Young Quasars: A Constraint on Galaxy Formation. Astrophysical Journal, 2001, 556, 87-92.	4.5	125
40	Challenges to the DGP model from horizon-scale growth and geometry. Physical Review D, 2008, 78, .	4.7	121
41	The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews, 2019, 86, 101525.	12.8	119
42	Relativistic boost as the cause of periodicity in a massive black-hole binary candidate. Nature, 2015, 525, 351-353.	27.8	118
43	Evidence of a Cosmological Strömgren Surface and of Significant Neutral Hydrogen Surrounding the Quasar SDSS J1030+0524. Astrophysical Journal, 2004, 611, L69-L72.	4.5	117
44	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	114
45	Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data. Physical Review D, 2015, 91, .	4.7	110
46	Evidence of Gunn–Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z â^1⁄4 6–7. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3058-3071.	4.4	106
47	On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4258-4267.	4.4	105
48	AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers. Astrophysical Journal, 2019, 876, 122.	4.5	103
49	Circumbinary Disks: Accretion and Torque as a Function of Mass Ratio and Disk Viscosity. Astrophysical Journal, 2020, 901, 25.	4.5	99
50	Probing cosmology with weak lensing peak counts. Physical Review D, 2010, 81, .	4.7	96
51	Photon Consumption in Minihalos during Cosmological Reionization. Astrophysical Journal, 2001, 551, 599-607.	4.5	95
52	Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1056-1063.	4.4	92
53	Binary black hole accretion during inspiral and merger. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 447, L80-L84.	3.3	90
54	Unveiling the gravitational universe at μ-Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	3.7	88

#	Article	IF	CITATIONS
55	Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nature Astronomy, 2017, 1, .	10.1	86
56	Mass-gap Mergers in Active Galactic Nuclei. Astrophysical Journal, 2021, 908, 194.	4.5	86
57	The Reionization History at High Redshifts. II. Estimating the Optical Depth to Thomson Scattering from Cosmic Microwave Background Polarization. Astrophysical Journal, 2003, 595, 13-18.	4.5	85
58	Constraining the evolution of dark energy with a combination of galaxy cluster observables. Physical Review D, 2004, 70, .	4.7	83
59	Imprint of Accretion Disk-Induced Migration on Gravitational Waves from Extreme Mass Ratio Inspirals. Physical Review Letters, 2011, 107, 171103.	7.8	83
60	MassiveNuS: cosmological massive neutrino simulations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	5.4	82
61	Premerger Localization of Gravitational Wave Standard Sirens with <i>LISA</i> : Triggered Search for an Electromagnetic Counterpart. Astrophysical Journal, 2008, 684, 870-887.	4.5	80
62	ls modified gravity required by observations? An empirical consistency test of dark energy models. Physical Review D, 2007, 76, .	4.7	79
63	Cosmological information in weak lensing peaks. Physical Review D, 2011, 84, .	4.7	79
64	Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: application to supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2680-2700.	4.4	79
65	A transition in circumbinary accretion discs at a binary mass ratio of 1:25. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2379-2393.	4.4	79
66	Lyα emission-line reconstruction for high- <i>z</i> QSOs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1814-1838.	4.4	77
67	The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2249-2257.	4.4	76
68	Characteristic signatures in the thermal emission from accreting binary black holes. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 446, L36-L40.	3.3	75
69	Spin Evolution of Stellar-mass Black Hole Binaries in Active Galactic Nuclei. Astrophysical Journal, 2020, 899, 26.	4.5	75
70	Improved models for cosmic infrared background anisotropies: new constraints on the infrared galaxy population. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2832-2845.	4.4	74
71	Emulating the CFHTLenS weak lensing data: Cosmological constraints from moments and Minkowski functionals. Physical Review D, 2015, 91, .	4.7	74
72	Probing cosmology with weak lensing Minkowski functionals. Physical Review D, 2012, 85, .	4.7	73

#	Article	IF	CITATIONS
73	Non-Gaussian information from weak lensing data via deep learning. Physical Review D, 2018, 97, .	4.7	73
74	Gas-driven Inspiral of Binaries in Thin Accretion Disks. Astrophysical Journal, 2020, 900, 43.	4.5	73
75	Was Star Formation Suppressed in Highâ€Redshift Minihalos?. Astrophysical Journal, 2006, 650, 7-11.	4.5	72
76	Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3309-3316.	4.4	67
77	AGN as potential factories for eccentric black hole mergers. Nature, 2022, 603, 237-240.	27.8	67
78	Does disc fragmentation prevent the formation of supermassive stars in protogalaxies?. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1549-1557.	4.4	65
79	Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2012, 420, 705-719.	4.4	63
80	Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3410-3433.	4.4	63
81	HeiiRecombination Lines from the First Luminous Objects. Astrophysical Journal, 2001, 553, 73-77.	4.5	62
82	High-redshift star formation in a time-dependent Lyman–Werner background. Monthly Notices of the Royal Astronomical Society, 2014, 445, 107-114.	4.4	62
83	Eccentric Black Hole Mergers in Active Galactic Nuclei. Astrophysical Journal Letters, 2021, 907, L20.	8.3	62
84	Gravitational wave background from Population III binary black holes consistent with cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2722-2727.	4.4	61
85	Black Hole Formation in the Lower Mass Gap through Mergers and Accretion in AGN Disks. Astrophysical Journal Letters, 2020, 901, L34.	8.3	61
86	Ultraviolet Radiative Feedback on Highâ€Redshift Protogalaxies. Astrophysical Journal, 2006, 648, 835-851.	4.5	59
87	Suppression of HD cooling in protogalactic gas clouds by Lyman-Werner radiation. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2603-2616.	4.4	59
88	X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2974-2987.	4.4	59
89	Probing stellar binary black hole formation in galactic nuclei via the imprint of their center of mass acceleration on their gravitational wave signal. Physical Review D, 2017, 96, .	4.7	59
90	Constraints on Reionization and Source Properties from the Absorption Spectra ofz > 6.2 Quasars. Astrophysical Journal, 2007, 660, 923-932.	4.5	58

#	Article	IF	CITATIONS
91	Focusing on warm dark matter with lensed high-redshift galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 435, L53-L57.	3.3	58
92	Cosmology with Minkowski functionals and moments of the weak lensing convergence field. Physical Review D, 2013, 88, .	4.7	58
93	Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates. Astrophysical Journal, 2018, 856, 42.	4.5	53
94	H2 suppression with shocking inflows: testing a pathway for supermassive black hole formation. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3798-3807.	4.4	52
95	Weak lensing cosmology with convolutional neural networks on noisy data. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1843-1860.	4.4	52
96	Formation of GW190521 via Gas Accretion onto Population III Stellar Black Hole Remnants Born in High-redshift Minihalos. Astrophysical Journal Letters, 2020, 903, L21.	8.3	51
97	Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: general theory. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2660-2679.	4.4	50
98	Equilibrium Eccentricity of Accreting Binaries. Astrophysical Journal Letters, 2021, 909, L13.	8.3	50
99	The Formation of the First Massive Black Holes. Astrophysics and Space Science Library, 2013, , 293-341.	2.7	50
100	Validity of the Born approximation for beyond Gaussian weak lensing observables. Physical Review D, 2017, 95, .	4.7	49
101	Limits on Population III star formation in minihaloes implied by <i>Planck</i> . Monthly Notices of the Royal Astronomical Society, 2015, 453, 4457-4467.	4.4	48
102	Identifying decaying supermassive black hole binaries from their variable electromagnetic emission. Classical and Quantum Gravity, 2009, 26, 094032.	4.0	47
103	Making a Supermassive Star by Stellar Bombardment. Astrophysical Journal, 2020, 892, 36.	4.5	47
104	A Constraint on the Gravitational Lensing Magnification and Age of the Redshiftz = 6.28 Quasar SDSS 1030+0524. Astrophysical Journal, 2002, 578, 702-707.	4.5	45
105	A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302-102?. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2540-2545.	4.4	45
106	Probing gas disc physics with LISA: simulations of an intermediate mass ratio inspiral in an accretion disc. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2754-2765.	4.4	45
107	Electromagnetic chirp of a compact binary black hole: A phase template for the gravitational wave inspiral. Physical Review D, 2017, 96, .	4.7	44
108	Constraining neutrino mass with weak lensing Minkowski Functionals. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 019-019.	5.4	44

#	Article	IF	CITATIONS
109	Massive BH binaries as periodically variable AGN. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1579-1594.	4.4	44
110	Constraining the Redshiftz â^¼â€‰6 Quasar Luminosity Function Using Gravitational Lensing. Astrophysical Journal, 2002, 580, 63-72.	4.5	42
111	Constraints on the Small‧cale Power Spectrum of Density Fluctuations from Highâ€Redshift Gammaâ€Ray Bursts. Astrophysical Journal, 2005, 623, 1-10.	4.5	42
112	IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. Astrophysical Journal, 2016, 828, 110.	4.5	42
113	Premerger localization of gravitational-wave standard sirens with LISA: Harmonic mode decomposition. Physical Review D, 2007, 76, .	4.7	39
114	Baryon impact on weak lensing peaks and power spectrum: Low-bias statistics and self-calibration in future surveys. Physical Review D, 2013, 87, .	4.7	39
115	Ripple effects and oscillations in the broad Fe Kα line as a probe of massive black hole mergers. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1468-1482.	4.4	39
116	Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4496-4504.	4.4	38
117	Evolution of gas disc–embedded intermediate mass ratio inspirals in the <i>LISA</i> band. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3540-3557.	4.4	38
118	Sample variance in weak lensing: How many simulations are required?. Physical Review D, 2016, 93, .	4.7	37
119	CMB lensing beyond the power spectrum: Cosmological constraints from the one-point probability distribution function and peak counts. Physical Review D, 2016, 94, .	4.7	37
120	Impact of magnification and size bias on the weak lensing power spectrum and peak statistics. Physical Review D, 2014, 89, .	4.7	36
121	GW170817A as a Hierarchical Black Hole Merger. Astrophysical Journal Letters, 2020, 890, L20.	8.3	36
122	Signatures of hierarchical mergers in black hole spin and mass distribution. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3362-3380.	4.4	36
123	Constraints from the Hubble Deep Field on Highâ€Redshift Quasar Models. Astrophysical Journal, 1999, 514, 535-543.	4.5	36
124	Self-consistent semi-analytic models of the first stars. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5246-5256.	4.4	35
125	Origin of weak lensing convergence peaks. Physical Review D, 2016, 94, .	4.7	34
126	Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nature Communications, 2017, 8, 831.	12.8	34

#	Article	IF	CITATIONS
127	Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4617-4628.	4.4	34
128	ON THE OCCUPATION FRACTION OF SEED BLACK HOLES IN HIGH-REDSHIFT DARK MATTER HALOS. Astrophysical Journal, 2009, 701, 360-368.	4.5	33
129	CONSTRAINING COSMOLOGY WITH HIGH-CONVERGENCE REGIONS IN WEAK LENSING SURVEYS. Astrophysical Journal, 2009, 691, 547-559.	4.5	32
130	Forming massive seed black holes in high-redshift quasar host progenitors. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5046-5060.	4.4	31
131	Feedback from the infrared background in the early Universe. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 425, L51-L55.	3.3	30
132	Low-density, radiatively inefficient rotating-accretion flow on to a black hole. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1412-1426.	4.4	30
133	Self-consistent Semianalytic Modeling of Feedback during Primordial Star Formation and Reionization. Astrophysical Journal, 2020, 897, 95.	4.5	30
134	Massive black hole and Population III galaxy formation in overmassive dark-matter haloes with violent merger histories. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4017-4027.	4.4	28
135	Accretion-Induced Collapse of Neutron Stars in the Disks of Active Galactic Nuclei. Astrophysical Journal, 2021, 915, 10.	4.5	27
136	Black Hole Mergers of AGN Origin in LIGO–Virgo's O1–O3a Observing Periods. Astrophysical Journal Letters, 2021, 920, L42.	8.3	27
137	Gas infall into atomic cooling haloes: on the formation of protogalactic discs and supermassive black holes at z > 10. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2301-2325.	4.4	26
138	Looking for Population III stars with HeÂii line intensity mapping. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2506-2513.	4.4	26
139	Intermediate-mass black holes from Population III remnants in the first galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4122-4134.	4.4	26
140	Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei. Astrophysical Journal, 2020, 896, 138.	4.5	26
141	CLOSE COMPANIONS TO TWO HIGH-REDSHIFT QUASARS. Astronomical Journal, 2014, 148, 73.	4.7	25
142	Spikey: self-lensing flares from eccentric SMBH binaries. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4061-4070.	4.4	25
143	Feedback from Clustered Sources during Reionization. Astrophysical Journal, 2006, 649, 570-578.	4.5	24
144	Constraining dark energy by combining cluster counts and shear-shear correlations in a weak lensing survey. Physical Review D, 2007, 75, .	4.7	24

#	Article	IF	CITATIONS
145	Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments. Physical Review D, 2016, 94, .	4.7	24
146	What is the maximum mass of a Population III galaxy?. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1456-1465.	4.4	24
147	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
148	Relic Hâ€fii regions and radiative feedback at high redshifts. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1650-1662.	4.4	23
149	Can Stellar-mass Black Hole Growth Disrupt Disks of Active Galactic Nuclei? The Role of Mechanical Feedback. Astrophysical Journal, 2022, 927, 41.	4.5	23
150	Do dark matter halos explain lensing peaks?. Physical Review D, 2016, 94, .	4.7	22
151	Beyond <i>J</i> _{crit} : a critical curve for suppression of H ₂ –cooling in protogalaxies. Monthly Notices of the Royal Astronomical Society, 0, , stx167.	4.4	22
152	Interpreting deep learning models for weak lensing. Physical Review D, 2020, 102, .	4.7	22
153	High angular resolution gravitational wave astronomy. Experimental Astronomy, 2021, 51, 1441-1470.	3.7	21
154	Gravitational Lensing Magnification without Multiple Imaging. Astrophysical Journal, 2005, 621, 559-573.	4.5	20
155	Cosmology with standard sirens: the importance of the shape of the lensing magnification distribution. Monthly Notices of the Royal Astronomical Society, 2011, 411, 9-22.	4.4	20
156	Gas Cloud G2 Can Illuminate the Black Hole Population Near the Galactic Center. Physical Review Letters, 2013, 110, 221102.	7.8	20
157	EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE. Astrophysical Journal, 2013, 774, 49.	4.5	20
158	Lighthouse in the dust: infrared echoes of periodic emission from massive black hole binariesâ~ Monthly Notices of the Royal Astronomical Society, 2017, 470, 1198-1217.	4.4	20
159	H2 self-shielding with non-LTE rovibrational populations: implications for cooling in protogalaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2467-2473.	4.4	20
160	Probing re-ionization with quasar spectra: the impact of the intrinsic Lyman <i>α</i> emission line shape uncertainty. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1493-1511.	4.4	19
161	The origin of spin in galaxies: clues from simulations of atomic cooling haloes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 784-802.	4.4	19
162	Multiple periods in the variability of the supermassive black hole binary candidate quasar PG1302-102?. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 454, L21-L25.	3.3	19

#	Article	IF	CITATIONS
163	The formation of the first black holes and their host halos. New Astronomy Reviews, 2006, 50, 672-676.	12.8	17
164	Gravitational Waves from Supermassive Black Hole Binaries in Ultraluminous Infrared Galaxies. Astrophysical Journal Letters, 2018, 863, L36.	8.3	17
165	THEZA: TeraHertz Exploration and Zooming-in for Astrophysics. Experimental Astronomy, 2021, 51, 559-594.	3.7	17
166	Ultra-short-period massive black hole binary candidates in LSST as LISA â€~verification binaries'. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2408-2417.	4.4	17
167	Simultaneously constraining cosmology and baryonic physics via deep learning from weak lensing. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1518-1528.	4.4	16
168	The science case and challenges of space-borne sub-millimeter interferometry. Acta Astronautica, 2022, 196, 314-333.	3.2	15
169	Self-lensing flares from black hole binaries: General-relativistic ray tracing of black hole binaries. Physical Review D, 2022, 105, .	4.7	15
170	Localization of binary black hole mergers with known inclination. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4459-4463.	4.4	14
171	κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5593-5602.	4.4	14
172	Stars as resonant absorbers of gravitational waves. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 445, L74-L78.	3.3	13
173	Chandra Observations of Candidate Subparsec Binary Supermassive Black Holes. Astrophysical Journal, 2020, 900, 148.	4.5	13
174	Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei. Astrophysical Journal Letters, 2022, 933, L28.	8.3	13
175	The thickness of high-redshift quasar ionization fronts as a constraint on the ionizing spectral energy distribution. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1561-1575.	4.4	12
176	Impact of spurious shear on cosmological parameter estimates from weak lensing observables. Physical Review D, 2014, 90, .	4.7	11
177	Geometry and growth contributions to cosmic shear observables. Physical Review D, 2017, 96, .	4.7	11
178	Identifying Direct Collapse Black Hole Seeds through Their Small Host Galaxies. Astrophysical Journal Letters, 2018, 865, L9.	8.3	11
179	Testing the relativistic Doppler boost hypothesis for the binary candidate quasar PG1302-102 with multiband <i>Swift</i> data. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1683-1696.	4.4	11
180	The impact of baryons on cosmological inference from weak lensing statistics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3406-3417.	4.4	10

#	Article	IF	CITATIONS
181	Correlation between optical and UV variability of a large sample of quasars. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1403-1413.	4.4	9
182	Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Physical Review Letters, 2022, 128, .	7.8	9
183	Probing cosmology and galaxy cluster structure with the Sunyaev��Zel'dovich decrement versus X-ray temperature scaling relation. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1085-1104.	4.4	8
184	Non-steady-state long-term evolution of supermassive black hole binaries surrounded by accretion discs. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4383-4396.	4.4	8
185	Gravitational Wave Backgrounds from Coalescing Black Hole Binaries at Cosmic Dawn: An Upper Bound. Astrophysical Journal, 2021, 919, 41.	4.5	8
186	Multimessenger Constraints on Magnetic Fields in Merging Black Hole–Neutron Star Binaries. Astrophysical Journal, 2022, 927, 56.	4.5	8
187	How Binaries Accrete: Hydrodynamic Simulations with Passive Tracer Particles. Astrophysical Journal, 2022, 932, 24.	4.5	8
188	Radiative feedback for supermassive star formation in a massive cloud with H2 molecules in an atomic-cooling halo. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5960-5971.	4.4	7
189	Optimizing Simulation Parameters for Weak Lensing Analyses Involving Non-Gaussian Observables. Astronomical Journal, 2020, 159, 284.	4.7	7
190	Binary black hole signatures in polarized light curves. Monthly Notices of the Royal Astronomical Society, 2021, 509, 212-223.	4.4	6
191	The impact of photometric redshift errors on lensing statistics in ray-tracing simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2730-2753.	4.4	4
192	The X-ray Chirp of a Compact Black Hole Binary. Foundations of Physics, 2018, 48, 1430-1445.	1.3	3
193	The matter fluctuation amplitude inferred from the weak lensing power spectrum and correlation function in CFHTLenS data. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5033-5042.	4.4	3
194	Learning from the machine. Nature Astronomy, 2019, 3, 18-19.	10.1	3
195	Suppression of H2 -cooling in protogalaxies aided by trapped Ly <i>α</i> cooling radiation. Monthly Notices of the Royal Astronomical Society, 2020, 500, 138-144.	4.4	3
196	Nucleosynthetic signatures of primordial origin around supermassive black holes. Physical Review D, 2021, 104, .	4.7	3
197	Cosmological constraints from weak lensing peaks: Can halo models accurately predict peak counts?. Physical Review D, 2022, 105, .	4.7	3

198 The Origin and Detection of High-Redshift Supermassive Black Holes. , 2010, , .

#	Article	IF	CITATIONS
199	Cosmic Reionization and the First Nonlinear Structures in the Universe. Astrophysics and Space Science Library, 2016, , 1-22.	2.7	2
200	Probing the reionization history of the Universe. , 0, , 157-173.		0
201	UV radiative feedback on high-redshift proto-galaxies. Proceedings of the International Astronomical Union, 2006, 2, 269-269.	0.0	0
202	Feedback Effects on Population III Star Formation. , 2008, , .		0
203	A Statistical Method for Detecting Gravitational Recoils of Supermassive Black Holes in Active Galactic Nuclei. Proceedings of the International Astronomical Union, 2016, 12, 227-230.	0.0	0