
Laurent David

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8920151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-membrane hydrogels. Nature, 2008, 452, 76-79.	13.7	462
2	Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites. Langmuir, 2004, 20, 1564-1571.	1.6	389
3	Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3172-3187.	2.4	298
4	ABC Triblock Copolymers/Epoxyâ^'Diamine Blends. 1. Keys To Achieve Nanostructured Thermosets. Macromolecules, 2002, 35, 6245-6254.	2.2	246
5	Steric Stabilization of Lipid/Polymer Particle Assemblies by Poly(ethylene glycol)-Lipids. Biomacromolecules, 2007, 8, 3651-3660.	2.6	155
6	Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials, 2017, 138, 91-107.	5.7	144
7	Polyelectrolyte Complexes from Polysaccharides:  Formation and Stoichiometry Monitoring. Langmuir, 2007, 23, 10950-10958.	1.6	132
8	Structural Regime Identification in Ionotropic Alginate Gels: Influence of the Cation Nature and Alginate Structure. Biomacromolecules, 2012, 13, 215-220.	2.6	131
9	Crystallization of Isotactic Polypropylene under High Pressure (γ Phase). Macromolecules, 2000, 33, 4138-4145.	2.2	116
10	Nanostructure of Calcium Alginate Aerogels Obtained from Multistep Solvent Exchange Route. Langmuir, 2008, 24, 12547-12552.	1.6	110
11	Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. I. Microstructure and crystallisation kinetics. Polymer, 2001, 42, 8425-8434.	1.8	99
12	Structural Characterization of Chitin and Chitosan Obtained by Biological and Chemical Methods. Biomacromolecules, 2011, 12, 3285-3290.	2.6	99
13	Influence of SiO2 fillers on the irradiation ageing of silicone rubbers. Polymer, 2001, 42, 9287-9292.	1.8	90
14	Polymer/Laponite Composite Latexes: Particle Morphology, Film Microstructure, and Properties. Macromolecular Rapid Communications, 2007, 28, 1567-1573.	2.0	87
15	Kinetics Study of the Solid-State Acid Hydrolysis of Chitosan: Evolution of the Crystallinity and Macromolecular Structure. Biomacromolecules, 2010, 11, 1376-1386.	2.6	86
16	Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin. Biomacromolecules, 2015, 16, 924-935.	2.6	85
17	Viscoelastic properties and morphological characterization of silica/polystyrene nanocomposites synthesized by nitroxide-mediated polymerization. Polymer, 2005, 46, 9965-9973.	1.8	84
18	A Novel Synthesis of Chitosan Nanoparticles in Reverse Emulsion. Langmuir, 2008, 24, 11370-11377.	1.6	83

#	Article	IF	CITATIONS
19	Electrodeposition of a Biopolymeric Hydrogel: Potential for One-Step Protein Electroaddressing. Biomacromolecules, 2012, 13, 1181-1189.	2.6	82
20	Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydrate Polymers, 2018, 190, 31-42.	5.1	79
21	Polysaccharide Gels Based on Chitosan and Modified Starch: Structural Characterization and Linear Viscoelastic Behavior. Biomacromolecules, 2010, 11, 1534-1543.	2.6	75
22	Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair. Biomimetics, 2019, 4, 19.	1.5	72
23	Complete Human and Rat Ex Vivo Spermatogenesis from Fresh or Frozen Testicular Tissue. Biology of Reproduction, 2016, 95, 89-89.	1.2	71
24	Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: Influence of thermal treatment. Journal of Polymer Science Part A, 2007, 45, 2657-2672.	2.5	66
25	Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid and Polymer Science, 2012, 290, 1423-1434.	1.0	66
26	Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrasonics Sonochemistry, 2016, 32, 79-85.	3.8	64
27	Silica Encapsulation by Miniemulsion Polymerization: Distribution and Localization of the Silica Particles in Droplets and Latex Particles. Langmuir, 2012, 28, 6021-6031.	1.6	63
28	Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: Influence of the dry-jet-stretching step and ageing. Acta Biomaterialia, 2006, 2, 387-402.	4.1	62
29	Molecular mobility in para-substituted polyaryls. 1. Sub-Tg relaxation phenomena in poly(aryl-ether-ether-ketone). Macromolecules, 1992, 25, 4302-4308.	2.2	60
30	Continuum of Structural Organization from Chitosan Solutions to Derived Physical Forms. Biomacromolecules, 2010, 11, 6-12.	2.6	59
31	Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomaterialia, 2015, 20, 51-59.	4.1	59
32	Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dental Materials, 2019, 35, 523-533.	1.6	59
33	Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. II. Short-term creep of isotropic and drawn materials. Journal of Applied Polymer Science, 2002, 84, 2308-2317.	1.3	58
34	Mechanisms Involved During the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control. Biomacromolecules, 2009, 10, 1203-1211.	2.6	58
35	Polysaccharide-Based Adhesive for Biomedical Applications: Correlation between Rheological Behavior and Adhesion. Biomacromolecules, 2011, 12, 1556-1566.	2.6	58
36	Wear Protection without Surface Modification Using a Synergistic Mixture of Molecular Brushes and Linear Polymers. ACS Nano, 2017, 11, 1762-1769.	7.3	58

#	Article	IF	CITATIONS
37	Relaxation of non-crystalline solids under mechanical stress. Journal of Non-Crystalline Solids, 2000, 274, 181-187.	1.5	52
38	Physicochemical modulation of chitosanâ€based hydrogels induces different biological responses: Interest for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 3666-3676.	2.1	47
39	Morphology and viscoelasticity of PP/TiO ₂ nanocomposites prepared by <i>in situ</i> sol–gel method. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1213-1222.	2.4	46
40	Chitosan Hydrogels for the Regeneration of Infarcted Myocardium: Preparation, Physicochemical Characterization, and Biological Evaluation. Biomacromolecules, 2016, 17, 1662-1672.	2.6	46
41	Polyelectrolyte Microstructure in Chitosan Aqueous and Alcohol Solutions. Biomacromolecules, 2007, 8, 1209-1217.	2.6	45
42	Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydrate Polymers, 2016, 154, 86-95.	5.1	45
43	A Novel Crosslinked Hyaluronic Acid Nanogel for Drug Delivery. Macromolecular Bioscience, 2014, 14, 1556-1568.	2.1	44
44	Highly stretchable hydrogels from complex coacervation of natural polyelectrolytes. Soft Matter, 2017, 13, 6594-6605.	1.2	44
45	Hybrid films of polyimide containing in situ generated silver or palladium nanoparticles: Effect of the particle precursor and of the processing conditions on the morphology and the gas permeability. Polymer, 2006, 47, 5303-5313.	1.8	42
46	Metal nanocomposite films prepared <i>in situ</i> from PVA and silver nitrate. Study of the nanostructuration process and morphology as a function of the <i>in situ</i> routes. Journal of Polymer Science Part A, 2008, 46, 2062-2071.	2.5	42
47	Synthesis and Structural Characterization of Chitosan Nanogels. Langmuir, 2009, 25, 8935-8943.	1.6	42
48	Highly crystalline chitosan produced by multi-steps acid hydrolysis in the solid-state. Carbohydrate Polymers, 2011, 83, 1730-1739.	5.1	42
49	Influence of the molecular architecture of low-density polyethylene on the texture and mechanical properties of blown films. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 327-340.	2.4	41
50	Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel. Materials Letters, 2012, 87, 97-100.	1.3	41
51	Intermolecular Interactions between Bottlebrush Polymers Boost the Protection of Surfaces against Frictional Wear. Chemistry of Materials, 2018, 30, 4140-4149.	3.2	41
52	3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization. Journal of Materials Science: Materials in Medicine, 2019, 30, 6.	1.7	40
53	New experimental features and revisiting the α and β mechanical relaxation in glasses and glass-forming liquids. Journal of Molecular Structure, 1999, 479, 183-194.	1.8	39
54	Influence of electron irradiation on the mobility and on the mechanical properties of DGEBA/TETA epoxy resins. Polymer, 2001, 42, 4657-4665.	1.8	39

#	Article	IF	CITATIONS
55	Enzymatic Production and Enzymatic-Mass Spectrometric Fingerprinting Analysis of Chitosan Polymers with Different Nonrandom Patterns of Acetylation. Journal of the American Chemical Society, 2019, 141, 3137-3145.	6.6	39
56	In situ generation of nanoparticulate lanthanum(III) oxide-polyimide films: characterization of nanoparticle formation and resulting polymer properties. Polymer, 2005, 46, 6657-6665.	1.8	38
57	Dynamic Structuration of Physical Chitosan Hydrogels. Langmuir, 2017, 33, 12697-12707.	1.6	37
58	Supercriticallyâ€Ðried Alginate Aerogels Retain the Fibrillar Structure of the Hydrogels. Macromolecular Symposia, 2008, 273, 80-84.	0.4	36
59	Chitosan-based hydrogels for developing a small-diameter vascular graft: <i>in vitro</i> and <i>in vivo</i> evaluation. Biomedical Materials (Bristol), 2017, 12, 065003.	1.7	36
60	Shear induced crystallization of poly(m-xylylene adipamide) with and without nucleating additives. Polymer, 2007, 48, 3273-3285.	1.8	35
61	Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers, 2021, 13, 1663.	2.0	35
62	Towards Biocompatible Vaccine Delivery Systems: Interactions of Colloidal PECs Based on Polysaccharides with HIV-1 p24 Antigen. Biomacromolecules, 2008, 9, 583-591.	2.6	34
63	Nanoparticles and Colloidal Hydrogels of Chitosan–Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications. International Journal of Molecular Sciences, 2020, 21, 5602.	1.8	34
64	Effect of physical aging on the low-frequency vibrational density of states of a glassy polymer. Europhysics Letters, 2003, 63, 778-784.	0.7	33
65	Glycol Chitosanâ€ <scp>B</scp> ased Nanogel as a Potential Targetable Carrier for siRNA. Macromolecular Bioscience, 2013, 13, 1369-1378.	2.1	33
66	Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior. AAPS PharmSciTech, 2017, 18, 1070-1083.	1.5	33
67	Structure and mechanical behavior of nylon-6 fibers filled with organic and mineral nanoparticles. I. Microstructure of spun and drawn fibers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3876-3892.	2.4	32
68	Synthesis of Polymer Latex Particles Decorated with Organically-Modified Laponite Clay Platelets via Emulsion Polymerization. Journal of Nanoscience and Nanotechnology, 2006, 6, 421-431.	0.9	32
69	The role of anelasticity in high stress mechanical response and physical properties of glassy polymers. Polymer Engineering and Science, 1997, 37, 1633-1640.	1.5	31
70	Reversible controlled assembly of chitosan and dextran sulfate: A new method for nanoparticle elaboration. Carbohydrate Polymers, 2014, 102, 717-726.	5.1	31
71	Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides. Bioresource Technology, 2016, 209, 180-186.	4.8	31
72	Molecular Mobility in Para-Substituted Polyaryls. 3. Low-Temperature Dynamics. Macromolecules, 1996, 29, 8343-8348.	2.2	30

#	Article	IF	CITATIONS
73	High temperature behaviour of the crystalline phases in unfilled and clay-filled nylon 6 fibers. Polymer, 2006, 47, 5071-5079.	1.8	30
74	Structure of Natural Polyelectrolyte Solutions: Role of the Hydrophilic/Hydrophobic Interaction Balance. Langmuir, 2009, 25, 6460-6468.	1.6	30
75	Highly selective multi-block poly(ether-urea-imide)s for CO2/N2 separation: Structure-morphology-properties relationships. Polymer, 2017, 131, 56-67.	1.8	30
76	Effect of physical aging on nano- and macroscopic properties of poly(methyl methacrylate) glass. Polymer, 2005, 46, 12523-12531.	1.8	28
77	Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization. European Polymer Journal, 2010, 46, 944-957.	2.6	28
78	Controlling the complexation of polysaccharides into multi-functional colloidal assemblies for nanomedicine. Journal of Colloid and Interface Science, 2014, 430, 147-156.	5.0	27
79	Electronic Density Fluctuations in Disordered Systems. 1. Effect of Thermal Treatments on the Dynamics and Local Microstructure of Poly(methyl methacrylate). Macromolecules, 1996, 29, 8387-8390.	2.2	26
80	Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation. Carbohydrate Polymers, 2016, 147, 313-322.	5.1	26
81	Nanocomposite membranes of polyetherimide nanostructured with palladium particles: Processing route, morphology and functional properties. Journal of Membrane Science, 2010, 361, 167-175.	4.1	25
82	Micron Range Morphology of Physical Chitosan Hydrogels. Langmuir, 2010, 26, 17495-17504.	1.6	25
83	Spinning of hydroalcoholic chitosan solutions. Carbohydrate Polymers, 2013, 98, 50-63.	5.1	25
84	Unraveling the Correlations between Conformation, Lubrication, and Chemical Stability of Bottlebrush Polymers at Interfaces. Biomacromolecules, 2017, 18, 4002-4010.	2.6	25
85	Reinforcing Mucus Barrier Properties with Low Molar Mass Chitosans. Biomacromolecules, 2018, 19, 872-882.	2.6	25
86	Mechanical Spectroscopy and other Relaxation Spectroscopies. Solid State Phenomena, 2003, 89, 31-66.	0.3	24
87	Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydrate Polymers, 2015, 131, 1-8.	5.1	24
88	Self-crosslinked fibrous collagen/chitosan blends: Processing, properties evaluation and monitoring of degradation by bi-fluorescence imaging. International Journal of Biological Macromolecules, 2019, 131, 353-367.	3.6	24
89	Irradiation effects on the relaxation behaviour of EPDM elastomers. Polymer International, 2004, 53, 495-505.	1.6	23
90	In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development. Journal of Cardiovascular Translational Research, 2017, 10, 480-488.	1.1	23

#	Article	IF	CITATIONS
91	Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohydrate Polymers, 2017, 157, 586-595.	5.1	23
92	Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers, 2021, 13, 1563.	2.0	23
93	Dielectric and mechanical relaxation behavior in poly(butyl methacrylate) isomers. Journal of Non-Crystalline Solids, 2005, 351, 595-603.	1.5	21
94	Uniaxially stretched poly(ethylene naphthalene 2,6-dicarboxylate) films studied by broadband dielectric spectroscopy. Journal of Non-Crystalline Solids, 2005, 351, 2742-2752.	1.5	21
95	Activity of chitin deacetylase from Colletotrichum gloeosporioides on chitinous substrates. Carbohydrate Polymers, 2013, 96, 227-232.	5.1	21
96	Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides. Carbohydrate Polymers, 2015, 134, 541-546.	5.1	21
97	Colorectal tissue engineering: A comparative study between porcine small intestinal submucosa (SIS) andÂchitosan hydrogel patches. Surgery, 2015, 158, 1714-1723.	1.0	21
98	Grafting cellulose acetate with ionic liquids for biofuel purification membranes : Influence of the anion. Carbohydrate Polymers, 2018, 196, 176-186.	5.1	21
99	Fabrication and characterization of hardystonite-chitosan biocomposite scaffolds. Ceramics International, 2019, 45, 8804-8814.	2.3	21
100	Morphologies of Cross-Linked Segmented Polyurethanes. Evolution during Maturation and Consequences on Elastic Properties and Thermal Compressive Fatigue. Macromolecules, 2010, 43, 1888-1900.	2.2	20
101	The biomechanical properties of canine skin measured in situ by uniaxial extension. Journal of Biomechanics, 2014, 47, 1067-1073.	0.9	19
102	Molecular mobility in para-substituted polyaryls. 2. Glass transition phenomena in amorphous poly(aryl ether ether ketone). Macromolecules, 1993, 26, 4489-4498.	2.2	18
103	Nonlinear mechanical response of amorphous polymers below and through glass transition temperature. Journal of Applied Polymer Science, 1997, 65, 2517-2528.	1.3	18
104	Polysaccharideâ€based vaccine delivery systems: Macromolecular assembly, interactions with antigen presenting cells, and <i>in vivo</i> immunomonitoring. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1322-1334.	2.1	18
105	Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. International Journal of Biological Macromolecules, 2019, 129, 68-77.	3.6	18
106	Mechanical Spectroscopy of Side-Chain Liquid Crystalline Polymers in the Glass Transition Range. Macromolecules, 1995, 28, 5758-5764.	2.2	17
107	Poly(imide–amide)–poly(ethylene adipate) hybrid networks. I. Nanostructure and segmental dynamics. Polymer, 2002, 43, 6943-6953.	1.8	17
108	Dielectric properties of polyamide 6-montmorillonite nanocomposites. Journal of Non-Crystalline Solids, 2010, 356, 589-596.	1.5	17

#	Article	IF	CITATIONS
109	New dextrin nanomagnetogels as contrast agents for magnetic resonance imaging. Journal of Materials Chemistry B, 2013, 1, 5853.	2.9	17
110	Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study. Materials Science and Engineering C, 2014, 42, 374-384.	3.8	17
111	Efficacy of epicardial implantation of acellular chitosan hydrogels in ischemic and nonischemic heart failure: impact of the acetylation degree of chitosan. Acta Biomaterialia, 2021, 119, 125-139.	4.1	17
112	Structures and rheological properties of reactive solutions of block copolymers. Part I. Diblock copolymers in a liquid epoxy monomer. Polymer, 2005, 46, 6605-6613.	1.8	16
113	Physical aging of atactic polystyrene as seen by dielectric relaxational and low-frequency vibrational Raman spectroscopies. Journal of Non-Crystalline Solids, 2005, 351, 2593-2598.	1.5	16
114	Labeling and Qualification of Endothelial Progenitor Cells for Tracking in Tissue Engineering: An in Vitro Study. International Journal of Artificial Organs, 2015, 38, 224-232.	0.7	16
115	Nanocomposite sponges for enhancing intestinal residence time following oral administration. Journal of Controlled Release, 2021, 333, 579-592.	4.8	16
116	Molecular mobility and structural state relationship in amorphous polymers. Journal of Non-Crystalline Solids, 1998, 235-237, 628-634.	1.5	15
117	Multiscale morphology and thermo-mechanical history of poly(vinyl chloride)(PVC). Polymer International, 2004, 53, 515-522.	1.6	15
118	Structural/compositional nanoheterogeneity and glass-transition plurality in amorphous polycyanurate-poly(tetramethylene glycol) hybrid networks. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3261-3272.	2.4	15
119	Discrimination of patterns of <i>N</i> -acetylation in chitooligosaccharides by gas phase IR spectroscopy integrated to mass spectrometry. Pure and Applied Chemistry, 2017, 89, 1349-1357.	0.9	15
120	Kinetics of chitosan coagulation from aqueous solutions. Journal of Applied Polymer Science, 2018, 135, 46062.	1.3	14
121	Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM. Progress in Biomaterials, 2020, 9, 187-201.	1.8	14
122	Physical aging and nanostructure of poly(methyl methacrylate): Effect of methanol. Journal of Chemical Physics, 2001, 114, 4685.	1.2	13
123	Influence of αâ€ZrP fillers and process conditions on the morphology and the gas barrier properties of filled polyamide 6 films. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1734-1746.	2.4	13
124	Interrupted Wet‧pinning Process for Chitosan Hollow Fiber Elaboration. Macromolecular Symposia, 2008, 266, 1-5.	0.4	13
125	Selfâ€Assemblies on Chitosan Nanohydrogels. Macromolecular Bioscience, 2010, 10, 424-432.	2.1	13
126	Grafting of multi-block copolymers: A new strategy for improving membrane separation performance for ethyl tert-butyl (ETBE) bio-fuel purification by pervaporation. Journal of Membrane Science, 2014, 469, 31-42.	4.1	13

#	Article	IF	CITATIONS
127	Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection. Soft Matter, 2018, 14, 2068-2076.	1.2	13
128	Intermolecular and intramolecular contributions to the relaxation process in sorbitol and maltitol. Molecular Physics, 2001, 99, 1845-1850.	0.8	12
129	Small-angle X-ray scattering investigation of the deformation processes in the amorphous phase of high density polyethylene. Polymer International, 2004, 53, 582-585.	1.6	12
130	Physical aging and molecular mobility of amorphous polymers. Journal of Non-Crystalline Solids, 2007, 353, 3871-3878.	1.5	12
131	Composition effects of thermoplastic segmented polyurethanes on their nanostructuring kinetics with or without preshear. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 801-811.	2.4	12
132	<i>In situ</i> synthesis of Fe ₃ O ₄ nanoparticles coated by chito-oligosaccharides: physico-chemical characterizations and cytotoxicity evaluation for biomedical applications. Nanotechnology, 2020, 31, 175602.	1.3	12
133	Controlled Polyelectrolyte Association of Chitosan and Carboxylated Nano-Fibrillated Cellulose by Desalting. Polymers, 2021, 13, 2023.	2.0	12
134	Recent Developments in Small-Angle X-Ray Scattering for the Study of Metals and Polymers. Advanced Engineering Materials, 2001, 3, 579.	1.6	11
135	Multifunctional covalent and ionic coupling agents of maleic anhydride modified polyethylene. Journal of Applied Polymer Science, 2007, 105, 2605-2610.	1.3	11
136	Magnetite nanoparticles with controlled sizes via thermal degradation of optimized PVA/Fe(III) complexes. Journal of Magnetism and Magnetic Materials, 2018, 460, 381-390.	1.0	11
137	Long-term physical ageing of amorphous polymers. Philosophical Magazine, 2007, 87, 417-424.	0.7	10
138	Nanostructured organic–inorganic hybrid films prepared by the sol–gel method from selfâ€assemblies of PSâ€ <i>b</i> â€paptesâ€ <i>b</i> â€PS triblock copolymers. Journal of Polymer Science Part A, 2011, 49, 4193-4203.	2.5	10
139	Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities. Journal of Colloid and Interface Science, 2019, 556, 592-605.	5.0	10
140	Lubrication and Wear Protection of Micro-Structured Hydrogels Using Bioinspired Fluids. Biomacromolecules, 2019, 20, 326-335.	2.6	10
141	Nanostructure and low-frequency vibrations in plasticized poly(methyl methacrylate). Europhysics Letters, 1998, 44, 747-752.	0.7	9
142	Temperature dependence of the density fluctuations of silica by small-angle X-ray scattering. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 431-438.	0.6	9
143	Control of the Morphology of Organic-Inorganic Hybrid Materials Elaborated by Reactive Processing Without Solvent. Journal of Sol-Gel Science and Technology, 2004, 31, 47-50.	1.1	9
144	Structure and mechanical behavior of nylon 6 fibers filled with organic and mineral nanoparticles. II.In situ study of deformation mechanisms. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2633-2648.	2.4	9

#	ARTICLE	IF	CITATIONS
145	Cell and tissue responses at the interface with a chitosan hydrogel intended for vascular applications: <i>in vitro</i> and <i>in vivo</i> exploration. Biomedical Materials (Bristol), 2019, 14, 025009.	1.7	9
146	Spinning of hydroalcoholic chitosan solutions: Mechanical behavior and multiscale microstructure of resulting fibers. Journal of Applied Polymer Science, 2019, 136, 47130.	1.3	9
147	Study of the ?-Mechanical Relaxation in Molecular Glass-Forming Liquids. Journal De Physique II, 1997, 7, 1635-1650.	0.9	9
148	Dental pulp inflammatory/immune response to a chitosan-enriched fibrin hydrogel in the pulpotomised rat incisor. , 2020, 40, 74-87.		9
149	Improved biological performance of ketoprofen using novel modified halloysite clay nanotubes. Applied Clay Science, 2022, 216, 106341.	2.6	9
150	Washing Durability of Cotton Coated with a Fluorinated Resin: An AFM, XPS, and Low Frequency Mechanical Spectroscopy Study. Textile Reseach Journal, 2002, 72, 832-843.	1.1	8
151	Orientation of uniaxially stretched poly(ethylene naphthalene 2,6-dicarboxylate) films by polarized infrared spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1950-1958.	2.4	8
152	Preparation and characterization of chitin hydrogels by water vapor induced gelation route. International Journal of Biological Macromolecules, 2012, 51, 431-439.	3.6	8
153	Colorectal tissue engineering: prerequisites, current status and perspectives. Expert Review of Medical Devices, 2013, 10, 501-507.	1.4	8
154	Shear Thinning Three-Dimensional Colloidal Assemblies of Chitosan and Poly(lactic acid) Nanoparticles. Journal of Physical Chemistry B, 2013, 117, 7455-7464.	1.2	8
155	Addition of abscisic acid increases the production of chitin deacetylase by Colletotrichum gloeosporioides in submerged culture. Process Biochemistry, 2016, 51, 959-966.	1.8	8
156	Macrophage polarization in vitro and in vivo modified by contact with fragmented chitosan hydrogel. Journal of Biomedical Materials Research - Part A, 2022, 110, 773-787.	2.1	8
157	Pure Chitosan Biomedical Textile Fibers from Mixtures of Low- and High-Molecular Weight Bidisperse Polymer Solutions: Processing and Understanding of Microstructure–Mechanical Properties' Relationship. International Journal of Molecular Sciences, 2022, 23, 4767.	1.8	8
158	Effect of orientation and crystallization on dielectric and mechanical relaxations in uniaxially stretched poly(ethylene naphthalene 2,6 dicarboxylate)(PEN) films. Journal of Non-Crystalline Solids, 2006, 352, 4746-4752.	1.5	7
159	In Situ Formation of a Uniform Distribution of Silver Nanoparticles in PVDF: Kinetics of Formation and Resulting Properties. Macromolecular Symposia, 2007, 247, 182-189.	0.4	7
160	Tunable Morphologies From Bulk Selfâ€Assemblies of Poly(acryloxypropyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 10-18.) 147 Td (1 1.1	triethoxysilane 7
161	Inelastic Light Scattering Contribution to the Study of the Onset of Sintering of a Nanopowder. Journal of Physical Chemistry C, 2017, 121, 2487-2494.	1.5	7
162	Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly. Acta Biomaterialia, 2019, 99, 211-219.	4.1	7

#	Article	IF	CITATIONS
163	Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence. , 2015, 2015, 2596-9.		6
164	A New Generation of Ultrasmall Nanoparticles Inducing Sensitization to Irradiation and Copper Depletion to Overcome Radioresistant and Invasive Cancers. Pharmaceutics, 2022, 14, 814.	2.0	6
165	Condensed State Molecular Dynamics in Sorbitol and Maltitol: Mobility Gradients and Conformation Transitions. Molecular Simulation, 2001, 27, 243-265.	0.9	5
166	Thermo-mechanical behavior of uniaxially drawn and crystallized poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 T	f 50 622 1 1.5	Id (naphthale
167	Colorectal wall regeneration resulting from the association of chitosan hydrogel and stromal vascular fraction from adipose tissue. Journal of Biomedical Materials Research - Part A, 2018, 106, 460-467.	2.1	5
168	Low-energy vibrational density of states of plasticized poly(methyl methacrylate). , 0, .		5
169	Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu ²⁺ and Zn ²⁺ . ACS Biomaterials Science and Engineering, 2022, 8, 1735-1748.	2.6	5
170	Relaxation processes in a glassy polymer containing methanol molecules. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 273-277.	2.6	4
171	Ordering in Bio-Polyelectrolyte Chitosan Solutions. Macromolecular Symposia, 2005, 222, 281-286.	0.4	4
172	Kovacs effect in PMMA observed by low-frequency Raman scattering (boson peak). Journal of Non-Crystalline Solids, 2006, 352, 4562-4567.	1.5	4
173	Physical Aging of Amorphous Matter: Down to the Nanometric Scale. Solid State Phenomena, 2006, 115, 99-112.	0.3	4
174	Feasibility study and direct extraction of endogenous free metallic cations combining hemodialysis and chelating polymer. Scientific Reports, 2021, 11, 19948.	1.6	4
175	Molecular dynamics study of the mobility in poly(butyl methacrylate) isomers. Molecular Physics, 2002, 100, 3723-3731.	0.8	3
176	Low-energy vibrational density of states of plasticized poly(methyl methacrylate). The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 533-539.	0.6	3
177	Mechanical Spectroscopy of Rolling Oil Films on Cold-Rolled Steel Sheets. Solid State Phenomena, 2003, 89, 321-326.	0.3	3
178	Morphology and texture development of uniaxially stretched poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50) 142 Td (naghthalene-

179	Morphology and dynamical behaviour of grafted copolymers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 259-262.	2.6	3
180	SAXS and SANS characterization of gelable polystyrene-b-poly(acryloxy propyl triethoxysilane) (PS-b-PAPTES) diblock copolymer micelles before and after hydrolysis–condensation. Soft Matter, 2012, 8, 6564.	1.2	3

#	Article	IF	CITATIONS
181	In situ coupled mechanical/electrical/WAXS/SAXS investigations on ethylene propylene diene monomer resin/carbon black nanocomposites. Polymer, 2022, 254, 125077.	1.8	3
182	Dynamics in polymer–liquid crystal microcomposites studied by low frequency mechanical spectroscopy. Journal of Alloys and Compounds, 2000, 310, 363-367.	2.8	2
183	Inelastic x-ray scattering from stretch-oriented polyethylene. Journal of Chemical Physics, 2003, 119, 1879-1884.	1.2	2
184	Structural changes on nanometric level in copolymers of methyl methacrylate with benzyl methacrylate as investigated by low frequency Raman scattering and small angle X-ray scattering. Journal of Non-Crystalline Solids, 2006, 352, 4568-4576.	1.5	2
185	The Use of Chitooligosaccharides in Cryopreservation: Discussion of Concept and First Answers from DSC Thermal Analysis. , 2020, , .		2
186	Mechanical properties of porcine spinal segments after intervertebral disc fenestration: an <i>in vitro</i> preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1904-1905.	0.9	0