Jincheng Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8919811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy and Environmental Science, 2020, 13, 4225-4237.	15.6	186
2	Silicene: A Promising Anode for Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1606716.	11.1	179
3	Tuning the Band Gap in Silicene by Oxidation. ACS Nano, 2014, 8, 10019-10025.	7.3	175
4	Nanodroplets for Stretchable Superconducting Circuits. Advanced Functional Materials, 2016, 26, 8111-8118.	7.8	158
5	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	5.5	141
6	Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation. Science Advances, 2016, 2, e1600067.	4.7	138
7	Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Science Advances, 2018, 4, eaau4511.	4.7	131
8	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. Nano Letters, 2017, 17, 7831-7838.	4.5	101
9	Band Gap Modulated by Electronic Superlattice in Blue Phosphorene. ACS Nano, 2018, 12, 5059-5065.	7.3	92
10	Cooperative Electron–Phonon Coupling and Buckled Structure in Germanene on Au(111). ACS Nano, 2017, 11, 3553-3559.	7.3	75
11	Honeycomb silicon: a review of silicene. Science Bulletin, 2015, 60, 1551-1562.	4.3	74
12	Effects of Oxygen Adsorption on the Surface State of Epitaxial Silicene on Ag(111). Scientific Reports, 2014, 4, 7543.	1.6	70
13	Investigation of electron-phonon coupling in epitaxial silicene by <i>in situ</i> Raman spectroscopy. Physical Review B, 2015, 91, .	1.1	67
14	Dirac Signature in Germanene on Semiconducting Substrate. Advanced Science, 2018, 5, 1800207.	5.6	59
15	Unabridged phase diagram for single-phased FeSexTe1-x thin films. Scientific Reports, 2014, 4, 7273.	1.6	38
16	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation. Advanced Materials, 2021, 33, e2101042.	11.1	38
17	Observation of van Hove Singularities in Twisted Silicene Multilayers. ACS Central Science, 2016, 2, 517-521.	5.3	37
18	Synthesis of Multilayer Silicene on Si(111)â^š3 × â^š3-Ag. Journal of Physical Chemistry C, 2017, 121, 27182-27190.	1.5	34

2

JINCHENG ZHUANG

#	Article	IF	CITATIONS
19	Construction of 2D lateral pseudoheterostructures by strain engineering. 2D Materials, 2017, 4, 025102.	2.0	31
20	Role of Charge Density Wave in Monatomic Assembly in Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1900367.	7.8	28
21	Anisotropic superconductivity of Ca _{1â^`} <i>_x</i> La <i>_x</i> FeAs ₂ (<i>x</i> â^1/4 0.18) single crystal. Applied Physics Express, 2014, 7, 063102.	1.1	27
22	Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). Nano Letters, 2019, 19, 5340-5346.	4.5	27
23	Synthesis of high-quality FeSe0.5Te0.5 polycrystal using an easy one-step technique. Journal of Alloys and Compounds, 2015, 644, 523-527.	2.8	26
24	Realization of Strained Stanene by Interface Engineering. Journal of Physical Chemistry Letters, 2019, 10, 1558-1565.	2.1	25
25	Kondo Holes in the Two-Dimensional Itinerant Ising Ferromagnet Fe ₃ GeTe ₂ . Nano Letters, 2021, 21, 6117-6123.	4.5	23
26	Bulk Superconductivity in Fe ₁₊ <i>_y</i> Te _{0.6} Se _{0.4} Induced by Removal of Excess Fe. Journal of the Physical Society of Japan, 2014, 83, 064704.	0.7	22
27	The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO ₄ â€based resistive switching memory. InformaÄnÃ-Materiály, 2020, 2, 960-967.	8.5	21
28	Recent Progress on Twoâ€Dimensional Heterostructures for Catalytic, Optoelectronic, and Energy Applications. ChemElectroChem, 2019, 6, 2841-2851.	1.7	18
29	Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 21985-21991.	4.0	17
30	Large-Gap Quantum Spin Hall State and Temperature-Induced Lifshitz Transition in Bi ₄ Br ₄ . ACS Nano, 2022, 16, 3036-3044.	7.3	17
31	Electronic Band Engineering in Elemental 2D Materials. Advanced Materials Interfaces, 2018, 5, 1800749.	1.9	16
32	Palladium forms Ohmic contact on hydrogen-terminated diamond down to 4 K. Applied Physics Letters, 2020, 116, .	1.5	14
33	Role of Atomic Interaction in Electronic Hybridization in Two-Dimensional Ag ₂ Ge Nanosheets. Journal of Physical Chemistry C, 2017, 121, 16754-16760.	1.5	13
34	Fabrication of Nb-sheathed FeSe0.5Te0.5 tape by an ex-situ powder-in-tube method. Journal of Alloys and Compounds, 2016, 664, 218-222.	2.8	12
35	Experimental Realization of Two-Dimensional Buckled Lieb Lattice. Nano Letters, 2020, 20, 2537-2543.	4.5	12
36	Epitaxial Growth of Quasi-One-Dimensional Bismuth-Halide Chains with Atomically Sharp Topological Non-Trivial Edge States. ACS Nano, 2021, 15, 14850-14857.	7.3	12

JINCHENG ZHUANG

#	Article	IF	CITATIONS
37	Rational design of two-dimensional hybrid Co/N-doped carbon nanosheet arrays for efficient bi-functional electrocatalysis. Sustainable Energy and Fuels, 2019, 3, 1757-1763.	2.5	11
38	Evidence for the dynamic relaxation behavior of oxygen vacancies in Aurivillius Bi2MoO6 from dielectric spectroscopy during resistance switching. Journal of Materials Chemistry C, 2019, 7, 8915-8922.	2.7	10
39	Enhancement of weak localization for nitrogen-doped graphene by short range potentials. Carbon, 2015, 82, 346-352.	5.4	9
40	Metal–silicene interaction studied by scanning tunneling microscopy. Journal of Physics Condensed Matter, 2016, 28, 034002.	0.7	9
41	Moiréâ€Potentialâ€Induced Band Structure Engineering in Graphene and Silicene. Small, 2021, 17, e1903769.	5.2	9
42	Native Surface Oxides Featured Liquid Metals for Printable Self-Powered Photoelectrochemical Device. Frontiers in Chemistry, 2019, 7, 356.	1.8	6
43	Facet-dependent Electronic Quantum Diffusion in the High-Order Topological Insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi Physical Review Applied, 2022, 17.</mml:mi </mml:msub></mml:math 	⇒₿i <td>:mi><mml:n< td=""></mml:n<></td>	:mi> <mml:n< td=""></mml:n<>
44	Reversible Potassium Intercalation in Blue Phosphorene–Au Network Driven by an Electric Field. Journal of Physical Chemistry Letters, 2020, 11, 5584-5590.	2.1	5
45	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation (Adv. Mater. 32/2021). Advanced Materials, 2021, 33, 2170247.	11.1	5
46	Resolving the intrinsic bandgap and edge effect of Bil3 film epitaxially grown on graphene. Materials Today Physics, 2021, 20, 100454.	2.9	4
47	Epitaxial growth mechanism of silicene on Ag(111). , 2014, , .		3
48	Raman Studies on Silicene and Germanene. Surface Innovations, 0, , 1-31.	1.4	2
49	High Pressure Driven Isostructural Electronic Phase Separation in 2D BiOI. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	1.2	2