Ruben Mestril

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8919357/publications.pdf

Version: 2024-02-01

57 papers 4,682 citations

126858 33 h-index 206029 48 g-index

57 all docs 57 docs citations

57 times ranked

5524 citing authors

#	Article	IF	CITATIONS
1	HSP72 protects against obesity-induced insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1739-1744.	3.3	477
2	Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Human Molecular Genetics, 2004, 13, 1389-1405.	1.4	302
3	Small Heat Shock Proteins and Protection Against Ischemic Injury in Cardiac Myocytes. Circulation, 1997, 96, 4343-4348.	1.6	300
4	Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Annals of Neurology, 2000, 47, 782-791.	2.8	269
5	Losing heart: the role of apoptosis in heart disease—a novel therapeutic target?. FASEB Journal, 2002, 16, 135-146.	0.2	265
6	Combined and Individual Mitochondrial HSP60 and HSP10 Expression in Cardiac Myocytes Protects Mitochondrial Function and Prevents Apoptotic Cell Deaths Induced by Simulated Ischemia-Reoxygenation. Circulation, 2001, 103, 1787-1792.	1.6	249
7	Ca 2+ /Calmodulin-Dependent Protein Kinase II Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes. Circulation Research, 2006, 99, 398-406.	2.0	231
8	Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and ageâ€related muscle dysfunction. FASEB Journal, 2004, 18, 1-12.	0.2	225
9	Overexpression of Heat Shock Protein 72 in Transgenic Mice Decreases Infarct Size In Vivo. Circulation, 1996, 94, 1408-1411.	1.6	199
10	Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. Journal of Molecular and Cellular Cardiology, 2003, 35, 1135-1143.	0.9	196
11	4-Tertiary Butyl Phenol Exposure Sensitizes Human Melanocytes to Dendritic Cell-Mediated Killing: Relevance to Vitiligo. Journal of Investigative Dermatology, 2005, 124, 798-806.	0.3	146
12	Effect of lifelong overexpression of HSP70 in skeletal muscle on ageâ€related oxidative stress and adaptation after nondamaging contractile activity. FASEB Journal, 2006, 20, 1549-1551.	0.2	146
13	Impairment of the ubiquitinâ€proteasome system in desminopathy mouse hearts. FASEB Journal, 2006, 20, 362-364.	0.2	146
14	CHIP and HSPs interact with \hat{I}^2 -APP in a proteasome-dependent manner and influence $A\hat{I}^2$ metabolism. Human Molecular Genetics, 2007, 16, 848-864.	1.4	140
15	Differential Effects of Mitochondrial Heat Shock Protein 60 and Related Molecular Chaperones to Prevent Intracellular \hat{I}^2 -Amyloid-induced Inhibition of Complex IV and Limit Apoptosis. Journal of Biological Chemistry, 2006, 281, 29468-29478.	1.6	119
16	Interleukin-18 Is a Pro-hypertrophic Cytokine That Acts through a Phosphatidylinositol 3-Kinase-Phosphoinositide-dependent Kinase-1-Akt-GATA4 Signaling Pathway in Cardiomyocytes. Journal of Biological Chemistry, 2005, 280, 4553-4567.	1.6	114
17	Simultaneous Overexpression of Two Stress Proteins in Rat Cardiomyocytes and Myogenic Cells Confers Protection Against Ischemia-Induced Injury. Circulation, 1997, 96, 2287-2294.	1.6	104
18	Aberrant protein aggregation is essential forÂaÂmutant desmin toÂimpair theÂproteolytic function ofÂtheÂubiquitin–proteasome system inÂcardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 40, 451-454.	0.9	86

#	Article	IF	CITATIONS
19	Adenovirus-mediated Gene Transfer of a Heat Shock Protein 70 (hsp70i) Protects Against Simulated Ischemia. Journal of Molecular and Cellular Cardiology, 1996, 28, 2351-2358.	0.9	83
20	Overexpression of inducible 70-kDa heat shock protein in mouse attenuates skeletal muscle damage induced by cryolesioning. American Journal of Physiology - Cell Physiology, 2006, 290, C1128-C1138.	2.1	81
21	Hsp10 and Hsp60 Suppress Ubiquitination of Insulin-like Growth Factor-1 Receptor and Augment Insulin-like Growth Factor-1 Receptor Signaling in Cardiac Muscle. Journal of Biological Chemistry, 2003, 278, 45492-45498.	1.6	80
22	Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord. Experimental Neurology, 2004, 185, 81-96.	2.0	60
23	Role of protein kinase C-ε in hypertrophy of cultured neonatal rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H756-H766.	1.5	53
24	Induction of Heat Shock Proteins by Tyrosine Kinase Inhibitors in Rat Cardiomyocytes and Myogenic Cells Confers Protection Against Simulated Ischemia. Journal of Molecular and Cellular Cardiology, 1997, 29, 1927-1938.	0.9	51
25	Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1081-H1088.	1.5	45
26	Heat shock factor 1–mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest. Cell Stress and Chaperones, 2001, 6, 326.	1.2	45
27	Specific heat shock proteins protect microtubules during simulated ischemia in cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2243-H2249.	1.5	44
28	Troponin I Levels in Patients with Preeclampsia. American Journal of Medicine, 2007, 120, 819.e13-819.e14.	0.6	44
29	Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 451-458.	0.9	42
30	Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy. Pflugers Archiv European Journal of Physiology, 2012, 463, 733-741.	1.3	42
31	Protection against endotoxemia by HSP70 in rodent cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1439-H1445.	1.5	41
32	Ecdysterone selectively stimulates the expression of a 23000-Da heat-shock protein- \hat{l}^2 -galactosidase hybrid gene in cultured Drosophila cells. Developmental Biology, 1985, 110, 321-330.	0.9	35
33	Overexpression of HSP10 in skeletal muscle of transgenic mice prevents the age-related fall in maximum tetanic force generation and muscle cross-sectional area. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R268-R276.	0.9	35
34	Phosphorylation and binding of AUF1 to the 3′-untranslated region of cardiomyocyte SERCA2a mRNA. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2543-H2550.	1.5	27
35	Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70. Physiological Genomics, 2000, 4, 25-33.	1.0	26
36	Downregulation of the constitutively expressed Hsc70 in diabetic myocardium is mediated by insulin deficiency. Journal of Endocrinology, 2006, 190, 433-440.	1.2	23

3

#	Article	IF	CITATIONS
37	Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection. Journal of Molecular and Cellular Cardiology, 2007, 42, 862-869.	0.9	23
38	Spinal heat shock protein (70) expression: effect of spinal ischemia, hyperthermia (42 \hat{A}° C)/hypothermia (27 \hat{A}° C), NMDA receptor activation and potassium evoked depolarization on the induction. Neurochemistry International, 2004, 44, 53-64.	1.9	14
39	Influence of PKC-α overexpression on HSP70 and cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2220-H2226.	1.5	14
40	Overexpression of heat shock proteins differentially modulates protein kinase C expression in rat neonatal cardiomyocytes. Cell Stress and Chaperones, 2003, 8, 297.	1.2	11
41	Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells. American Journal of Physiology - Renal Physiology, 2013, 305, F764-F776.	1.3	10
42	The use of transgenic mice to study cytoprotection by the stress proteins. Methods, 2005, 35, 165-169.	1.9	9
43	Mutation of COOH-terminal lysines in overexpressed αB- crystallin abrogates ischemic protection in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H85-H91.	1.5	8
44	Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction., 2000, 47, 782.		8
45	Heat shock and adaptive response to ischemia. Trends in Cardiovascular Medicine, 1991, 1, 240-244.	2.3	7
46	Hyperthermia: From Diagnostic and Treatments to New Discoveries. Recent Patents on Biotechnology, 2012, 6, 172-183.	0.4	4
47	Stress Protein Involvement in Cardioprotection Induced by Hypothermia. Journal of Molecular and Cellular Cardiology, 2001, 33, 2075-2078.	0.9	1
48	Overexpression of HSP70 attenuates sarcopenia by suppressing the expression of miRâ€₹33b. JCSM Rapid Communications, 2020, 3, 70-76.	0.6	1
49	Increased Heat Shock Protein Expression Decreases Inflammation in Skeletal Muscle During and after Frostbite Injury. Current Molecular Medicine, 2021, 20, 733-740.	0.6	1
50	Cardiomyocyte protection by Hsp70 and Hsc70 from oxidative stress induced apoptosis. FASEB Journal, 2006, 20, A119.	0.2	0
51	Potential mechanisms of heat shock protein 90 inhibitors in rat neonatal ventricular myocytes. FASEB Journal, 2006, 20, A386.	0.2	0
52	PKCâ€alpha Potentially Mediates Transcription of the Inducible HSP70 via APâ€1. FASEB Journal, 2009, 23, .	0.2	0
53	Evidence That The Overexpression Of The Inducible Heat Shock Protein 70 In Mouse Improves Recovery Of Skeletal Muscle From Atrophy. FASEB Journal, 2011, 25, 1050.3.	0.2	0
54	PKCâ€alpha regulates expression of the hsp70 promoter via its two proximal APâ€1 binding elements. FASEB Journal, 2011, 25, .	0.2	0

Ruben Mestril

#	Article	IF	CITATIONS
55	Increased expression of heat shock proteins in skeletal muscle induces autophagy. FASEB Journal, 2012, 26, lb680.	0.2	O
56	Preservation of skeletal muscle by the heat shock proteins following frostbite injury. FASEB Journal, 2013, 27, 1200.1.	0.2	0
57	Ischemia, Infarction and HSP70. Developments in Cardiovascular Medicine, 1997, , 25-39.	0.1	O