Rosanna Chianese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8919336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	19
2	LINCking the Nuclear Envelope to Sperm Architecture. Genes, 2021, 12, 658.	1.0	12
3	CRISP2, CATSPER1 and PATE1 Expression in Human Asthenozoospermic Semen. Cells, 2021, 10, 1956.	1.8	7
4	Mitochondrial Reactive Oxygen Species (ROS) Production Alters Sperm Quality. Antioxidants, 2021, 10, 92.	2.2	70
5	Ankrd31 in Sperm and Epididymal Integrity. Frontiers in Cell and Developmental Biology, 2021, 9, 741975.	1.8	4
6	Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility. International Journal of Molecular Sciences, 2020, 21, 7022.	1.8	60
7	Environmental Impact on Male (In)Fertility via Epigenetic Route. Journal of Clinical Medicine, 2020, 9, 2520.	1.0	35
8	Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. Journal of Clinical Medicine, 2020, 9, 640.	1.0	37
9	CircRNA Role and circRNA-Dependent Network (ceRNET) in Asthenozoospermia. Frontiers in Endocrinology, 2020, 11, 395.	1.5	33
10	Expression Patterns of Circular RNAs in High Quality and Poor Quality Human Spermatozoa. Frontiers in Endocrinology, 2019, 10, 435.	1.5	36
11	Neuro-toxic and Reproductive Effects of BPA. Current Neuropharmacology, 2019, 17, 1109-1132.	1.4	141
12	CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biology, 2019, 16, 1237-1248.	1.5	31
13	Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Scientific Reports, 2018, 8, 2961.	1.6	61
14	Introductory Chapter: Spermatozoa - Facts and Perspectives. , 2018, , .		0
15	Bisphenol A in Reproduction: Epigenetic Effects. Current Medicinal Chemistry, 2018, 25, 748-770.	1.2	117
16	Impact of Dietary Fats on Brain Functions. Current Neuropharmacology, 2018, 16, 1059-1085.	1.4	95
17	Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction, 2017, 154, 403-414.	1.1	26
18	Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells. Frontiers in Endocrinology, 2016, 7, 47.	1.5	19

ROSANNA CHIANESE

#	Article	IF	CITATIONS
19	Bisphenol A induces hypothalamic down-regulation of the the cannabinoid receptor 1 and anorexigenic effects in male mice. Pharmacological Research, 2016, 113, 376-383.	3.1	24
20	Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus. Molecular and Cellular Endocrinology, 2016, 420, 75-84.	1.6	19
21	Kisspeptins, Estrogens and Male Fertility. Current Medicinal Chemistry, 2016, 23, 4070-4091.	1.2	47
22	Expression Analysis of <i>Gnrh1</i> and <i>Gnrh1</i> in Spermatogenic Cells of Rat. International Journal of Endocrinology, 2015, 2015, 1-8.	0.6	26
23	Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: A study carried out in ex vivo testes. General and Comparative Endocrinology, 2015, 211, 81-91.	0.8	32
24	Intra-Testicular Signals Regulate Germ Cell Progression and Production of Qualitatively Mature Spermatozoa in Vertebrates. Frontiers in Endocrinology, 2014, 5, 69.	1.5	51
25	Molecular Chaperones, Cochaperones, and Ubiquitination/Deubiquitination System: Involvement in the Production of High Quality Spermatozoa. BioMed Research International, 2014, 2014, 1-10.	0.9	30
26	Hypothalamus–pituitary axis: An obligatory target for endocannabinoids to inhibit steroidogenesis in frog testis. General and Comparative Endocrinology, 2014, 205, 88-93.	0.8	13
27	Kisspeptin Receptor, GPR54, as a Candidate for the Regulation of Testicular Activity in the Frog Rana esculenta1. Biology of Reproduction, 2013, 88, 73.	1.2	36
28	Endocannabinoids and Endovanilloids: A Possible Balance in the Regulation of the Testicular GnRH Signalling. International Journal of Endocrinology, 2013, 2013, 1-9.	0.6	8
29	Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E475-E487.	1.8	31
30	The contribution of lower vertebrate animal models in human reproduction research. General and Comparative Endocrinology, 2011, 171, 17-27.	0.8	37
31	Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon. General and Comparative Endocrinology, 2011, 173, 389-395.	0.8	23
32	Cannabinoids and Reproduction: A Lasting and Intriguing History. Pharmaceuticals, 2010, 3, 3275-3323.	1.7	28
33	Chapter 14 CB1 Activity in Male Reproduction: Mammalian and Nonmammalian Animal Models. Vitamins and Hormones, 2009, 81, 367-387.	0.7	29
34	Testicular Gonadotropinâ€releasing Hormone Activity, Progression of Spermatogenesis, and Sperm Transport in Vertebrates. Annals of the New York Academy of Sciences, 2009, 1163, 279-291.	1.8	34
35	The Endocannabinoid System: An Ancient Signaling Involved in the Control of Male Fertility. Annals of the New York Academy of Sciences, 2009, 1163, 112-124.	1.8	38
36	Non-mammalian vertebrate models and the endocannabinoid system: Relationships with gonadotropin-releasing hormone. Molecular and Cellular Endocrinology, 2008, 286, S46-S51.	1.6	21

ROSANNA CHIANESE

#	Article	IF	CITATIONS
37	Interplay between the Endocannabinoid System and GnRH-I in the Forebrain of the Anuran Amphibian Rana esculenta. Endocrinology, 2008, 149, 2149-2158.	1.4	47
38	Cloning of type 1 cannabinoid receptor in Rana esculenta reveals differences between genomic sequence and cDNA. FEBS Journal, 2007, 274, 2909-2920.	2.2	19
39	UBPy/MSJ-1 system during male germ cell progression in the frog, Rana esculenta. General and Comparative Endocrinology, 2007, 153, 275-279.	0.8	6
40	Type-1 cannabinoid receptor expression in the frog,Rana esculenta, tissues: A possible involvement in the regulation of testicular activity. Molecular Reproduction and Development, 2006, 73, 551-558.	1.0	36
41	Endocannabinoid System in Frog and Rodent Testis: Type-1 Cannabinoid Receptor and Fatty Acid Amide Hydrolase Activity in Male Germ Cells1. Biology of Reproduction, 2006, 75, 82-89.	1.2	94
42	Endocannabinoids and Kisspeptins: Two Modulators in Fight for the Regulation of GnRH Activity. , 0, , .		5
43	The Endocannabinoid System in Human Physiology. , 0, , .		1
44	KISS1R and ANKRD31 Cooperate to Enhance Leydig Cell Gene Expression via the Cytoskeletal-Nucleoskeletal Pathway. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1