Guangcai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8919323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Co-Transport of PFAS and Cr(VI) in porous media. Chemosphere, 2022, 286, 131834.	4.2	5
2	Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: a review. Environmental Chemistry Letters, 2022, 20, 1497-1528.	8.3	17
3	Co-variation of hydrochemistry, inorganic nitrogen, and microbial community composition along groundwater flowpath: A case study in Linzhou-Anyang area, Southern North China plain. Applied Geochemistry, 2022, 140, 105296.	1.4	11
4	Geochemical evolution of groundwater under the influence of human activities: A case study in the southwest of Poyang Lake Basin. Applied Geochemistry, 2022, 140, 105299.	1.4	18
5	Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water. Water Research, 2022, 215, 118277.	5.3	39
6	Groundwater discharge tracing for a large Ice-Covered lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes (D, 18O, and 222Rn). Journal of Hydrology, 2022, 609, 127741.	2.3	14
7	Surface-subsurface hydrological processes of rainwater harvesting project in karst mountainous areas indicated by stable hydrogen and oxygen isotopes. Science of the Total Environment, 2022, 831, 154924.	3.9	5
8	Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield, northern Ordos Basin, China. Science of the Total Environment, 2022, 835, 155519.	3.9	26
9	Impact of Mining Activities on Groundwater Level, Hydrochemistry, and Aquifer Parameters in a Coalfield's Overburden Aquifer. Mine Water and the Environment, 2022, 41, 640-653.	0.9	4
10	Source Apportionment and Ecological-Health Risks Assessment of Heavy Metals in Topsoil Near a Factory, Central China. Exposure and Health, 2021, 13, 79-92.	2.8	24
11	Application of multiple approaches to investigate hydraulic connection in multiple aquifers system in coalfield. Journal of Hydrology, 2021, 595, 125673.	2.3	13
12	Sustained Changes in Well Water Levels Following a Large Earthquake: Possible Evidence of Permeability Decreases in a Shallow Groundwater System. Geophysical Research Letters, 2021, 48, .	1.5	1
13	Spatiotemporal Variation of Groundwater Recharge in the Lower Reaches of the Poyang Lake Basin, China: Insights From Stable Hydrogen and Oxygen Isotopes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033760.	1.2	32
14	Hydrogeochemical Constraints Shape Hot Spring Microbial Community Compositions: Evidence From Acidic, Moderateâ€Temperature Springs and Alkaline, Highâ€Temperature Springs, Southwestern Yunnan Geothermal Areas, China. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005868.	1.3	6
15	Tracing Bank Storage and Hyporheic Exchange Dynamics Using ²²² Rn: Virtual and Field Tests and Comparison With Other Tracers. Water Resources Research, 2021, 57, e2020WR028960.	1.7	10
16	Sensitivity of Permeability Changes to Different Earthquakes in a Fault Zone: Possible Evidence of Dependence on the Frequency of Seismic Waves. Geophysical Research Letters, 2021, 48, e2021GL092553.	1.5	4
17	Different Sensitivities of Earthquakeâ€Induced Water Level and Hydrogeological Property Variations in Two Aquifer Systems. Water Resources Research, 2021, 57, e2020WR028217.	1.7	9
18	Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides. Geofluids, 2021, 2021, 1-13.	0.3	5

#	Article	IF	CITATIONS
19	Assessment of soil fertility degradation affected by mining disturbance and land use in a coalfield via machine learning. Ecological Indicators, 2021, 125, 107608.	2.6	26
20	Origin and controlling factors of groundwater chemistry and quality in the Zhiluo aquifer system of northern Ordos Basin, China. Environmental Earth Sciences, 2021, 80, 1.	1.3	19
21	Periodic variations of rainfall, groundwater level and dissolved radon from the perspective of wavelet analysis: a case study in Tengchong, southwest China. Environmental Earth Sciences, 2021, 80, 1.	1.3	7
22	Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China. Journal of Hydrology, 2021, 598, 126243.	2.3	38
23	Multiple factors control groundwater chemistry and quality of multi-layer groundwater system in Northwest China coalfield — Using self-organizing maps (SOM). Journal of Geochemical Exploration, 2021, 227, 106795.	1.5	43
24	Hydrochemical changes of a spring due to the May 30, 2014ÂMs 6.1 Yingjiang earthquake, southwest China. Environmental Pollution, 2021, 284, 117125.	3.7	6
25	Detection of hydrological responses to longwall mining in an overburden aquifer. Journal of Hydrology, 2021, 603, 126919.	2.3	4
26	Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield. Forests, 2021, 12, 1370.	0.9	7
27	Relationship between Earthquake-Induced Hydrologic Changes and Faults. Water (Switzerland), 2021, 13, 2795.	1.2	2
28	Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics. Journal of Cleaner Production, 2021, 329, 129697.	4.6	42
29	Quantification of the effect of soil erosion factors on soil nutrients at a small watershed in the Loess Plateau, Northwest China. Journal of Soils and Sediments, 2020, 20, 745-755.	1.5	10
30	Local groundwater and tidal changes induced by large earthquakes in the Taiyuan Basin, North China from well monitoring. Journal of Hydrology, 2020, 582, 124479.	2.3	10
31	Moisture sources and climate evolution during the last 30 kyr in northeastern Tibetan Plateau: Insights from groundwater isotopes (2H, 18O, 3H and 14C) and water vapour trajectories modeling. Quaternary Science Reviews, 2020, 242, 106426.	1.4	20
32	Groundwater radon precursor anomalies identification by decision tree method. Applied Geochemistry, 2020, 121, 104696.	1.4	17
33	Modeling Earthquakeâ€Induced Spring Discharge and Temperature Changes in a Fault Zone Hydrothermal System. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019344.	1.4	12
34	Identifying locations and sources of groundwater discharge into Poyang Lake (eastern China) using radium and stable isotopes (deuterium and oxygen-18). Science of the Total Environment, 2020, 740, 140163.	3.9	31
35	Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China. Journal of Hydrology, 2020, 585, 124782.	2.3	25
36	Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water (Switzerland), 2020, 12, 836.	1.2	68

#	Article	IF	CITATIONS
37	Temperature governs the distribution of hot spring microbial community in three hydrothermal fields, Eastern Tibetan Plateau Geothermal Belt, Western China. Science of the Total Environment, 2020, 720, 137574.	3.9	43
38	Temporal changes of hydraulic properties of overburden aquifer induced by longwall mining in Ningtiaota coalfield, northwest China. Journal of Hydrology, 2020, 582, 124525.	2.3	18
39	Long-term In Situ Permeability Variations of an Active Fault Zone in the Interseismic Period. Pure and Applied Geophysics, 2019, 176, 5279-5289.	0.8	2
40	Comparison of aquifer parameters inferred from water level changes induced by slug test, earth tide and earthquake – A case study in the three Gorges area. Journal of Hydrology, 2019, 579, 124169.	2.3	23
41	Groundwater microbial communities and their connection to hydrochemical environment in Golmud, Northwest China. Science of the Total Environment, 2019, 695, 133848.	3.9	47
42	Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China. Journal of Hydrology, 2019, 579, 124175.	2.3	29
43	Large Earthquake Reshapes the Groundwater Flow System: Insight From the Waterâ€Level Response to Earth Tides and Atmospheric Pressure in a Deep Well. Water Resources Research, 2019, 55, 4207-4219.	1.7	62
44	Isotopes in groundwater (2H, 18O, 14C) revealed the climate and groundwater recharge in the Northern China. Science of the Total Environment, 2019, 666, 298-307.	3.9	28
45	Systematic Analysis of Geothermal Resources in the Coastal Bedrock Area of Chunxiao Town (China) by Using Geochemistry and Geophysics Methods. Water (Switzerland), 2019, 11, 214.	1.2	1
46	Title is missing!. Pageoph Topical Volumes, 2019, , .	0.2	0
47	Title is missing!. Pageoph Topical Volumes, 2019, , .	0.2	0
48	Fault Zone Permeability Decrease Following Large Earthquakes in a Hydrothermal System. Geophysical Research Letters, 2018, 45, 1387-1394.	1.5	44
49	Groundwater quality and associated hydrogeochemical processes in Northwest Namibia. Journal of Geochemical Exploration, 2018, 186, 202-214.	1.5	50
50	Distributions, Sources, and Species of Heavy Metals/Trace Elements in Shallow Groundwater Around the Poyang Lake, East China. Exposure and Health, 2018, 10, 211-227.	2.8	63
51	Hydrological Changes Induced by Distant Earthquakes at the Lujiang Well in Anhui, China. Pure and Applied Geophysics, 2018, 175, 2459-2474.	0.8	4
52	Tectonically Induced Anomalies Without Large Earthquake Occurrences. Pure and Applied Geophysics, 2018, 175, 2513-2526.	0.8	6
53	Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China. Mine Water and the Environment, 2018, 37, 119-136.	0.9	62
54	Quantitative Assessment of the Mechanisms of Earthquake-Induced Groundwater-Level Change in the MP Well, Three Gorges Area. Pure and Applied Geophysics, 2018, 175, 2475-2484.	0.8	8

#	Article	IF	CITATIONS
55	Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China. Water (Switzerland), 2018, 10, 1667.	1.2	30
56	Hydrological buffering during groundwater acidification in rapidly industrializing alluvial plains. Journal of Contaminant Hydrology, 2018, 218, 19-33.	1.6	6
57	Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium,) Tj ETQq1 1 650-661.	0.784314 2.3	rgBT /Overloc 44
58	Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (ID and Î18O) and radon. Hydrogeology Journal, 2018, 26, 1625-1638.	0.9	44
59	å^©ç''¨ç¨³å®šåŒä¼₂ç´(ÎƊ,δ18O,δ34Så'Œ87Sr/86Sr)è⁻†å^«åŽåŒ—å³°å³°çŸ¿åŒºåºŸå¼ƒçŸ¿äº•åæ°´æ°´æ⁰• Hy	drogക്രിog	y Jos ernal, 201
60	Groundwater Microbial Communities Along a Generalized Flowpath in Nomhon Area, Qaidam Basin, China. Ground Water, 2018, 56, 719-731.	0.7	21
61	Decadal radon cycles in a hot spring. Scientific Reports, 2017, 7, 12120.	1.6	40
62	Evaluation of the permeability properties of the Xiaojiang Fault Zone using hot springs and water wells. Geophysical Journal International, 2017, 209, 1526-1533.	1.0	22
63	Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis. Geofluids, 2017, 2017, 1-11.	0.3	18
64	Microbial Community Structures in Petroleum Contaminated Soils at an Oil Field, Hebei, China. Clean - Soil, Air, Water, 2016, 44, 829-839.	0.7	18
65	Sensitivity of hydraulic properties to dynamic strain within a fault damage zone. Journal of Hydrology, 2016, 543, 721-728.	2.3	39
66	Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Applied and Environmental Microbiology, 2016, 82, 3611-3621.	1.4	46
67	Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, Northwestern China. Exposure and Health, 2016, 8, 389-400.	2.8	16
68	Evolution of the groundwater chemical composition in the Poyang Lake catchment, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	32
69	Aquifers switched from confined to semiconfined by earthquakes. Geophysical Research Letters, 2016, 43, 11,166.	1.5	49
70	Bacterial Diversity and Biogeochemical Processes of Oil-Contaminated Groundwater, Baoding, North China. Geomicrobiology Journal, 2016, 33, 537-551.	1.0	16
71	Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	18
72	Coseismic response of water level in Changping well, China, to the Mw 9.0 Tohoku earthquake. Journal of Hydrology, 2015, 531, 1028-1039.	2.3	41

#	Article	IF	CITATIONS
73	Sustained groundwater level changes and permeability variation in a fault zone following the 12 May 2008, M _w 7.9 Wenchuan earthquake. Hydrological Processes, 2015, 29, 2659-2667.	1.1	35
74	Mechanism of co-seismic water level change following four great earthquakes – insights from co-seismic responses throughout the Chinese mainland. Earth and Planetary Science Letters, 2015, 430, 66-74.	1.8	90
75	Continentalâ€scale waterâ€level response to a large earthquake. Geofluids, 2015, 15, 310-320.	0.3	42
76	Comparison of hydrological responses to the Wenchuan and Lushan earthquakes. Earth and Planetary Science Letters, 2014, 391, 193-200.	1.8	50
77	Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China. Hydrological Processes, 2014, 28, 2185-2191.	1.1	22
78	Hydrological response to multiple large distant earthquakes in the Mile well, China. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2448-2459.	1.0	49
79	Characteristic features of groundwater pollution in the Poyang Lake catchment. IOP Conference Series: Earth and Environmental Science, 2014, 21, 012023.	0.2	8
80	Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrological Processes, 2013, 27, 2247-2257.	1.1	60
81	Co-Seismic Groundwater Level Changes Induced by the May 12, 2008 Wenchuan Earthquake in the Near Field. Pure and Applied Geophysics, 2013, 170, 1773-1783.	0.8	35
82	Relationship between the Earth tidal factor and phase lag of groundwater levels in confined aquifers and the Wenchuan M s8.0 earthquake of 2008. Science China Earth Sciences, 2013, 56, 1722-1730.	2.3	8
83	Coseismic response of groundwater level in the Three Gorges well network and its relationship to aquifer parameters. Science Bulletin, 2013, 58, 3080-3087.	1.7	28
84	Advances in research on earthquake fluids hydrogeology in China: a review. Earthquake Science, 2013, 26, 415-425.	0.4	9
85	Relationship between the hydrogeochemical environment and sandstone-type uranium mineralization in the Ili basin, China. Applied Geochemistry, 2011, 26, 133-139.	1.4	25
86	Coseismic responses of groundwater levels in the Three Gorges well-network to the Wenchuan MS8.0 earthquake. Earthquake Science, 2009, 22, 143-148.	0.4	6
87	The use of soil mercury and radon gas surveys to assist the detection of concealed faults in Fuzhou City, China. Environmental Geology, 2006, 51, 83-90.	1.2	12