
Kazi Fazle Rabbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918823/publications.pdf Version: 2024-02-01

KAZI FAZIF RABBI

#	Article	IF	CITATIONS
1	Superior Antidegeneration Hierarchical Nanoengineered Wicking Surfaces for Boiling Enhancement. Advanced Functional Materials, 2022, 32, 2108836.	7.8	23
2	Opportunities in Nano-Engineered Surface Designs for Enhanced Condensation Heat and Mass Transfer. Journal of Heat Transfer, 2022, 144, .	1.2	18
3	Life Span of Slippery Lubricant Infused Surfaces. ACS Applied Materials & Interfaces, 2022, 14, 4598-4611.	4.0	32
4	Polydimethylsiloxane‣ilane Synergy enables Dropwise Condensation of Low Surface Tension Liquids. Advanced Functional Materials, 2022, 32, .	7.8	19
5	Tunable and Robust Nanostructuring for Multifunctional Metal Additively Manufactured Interfaces. Nano Letters, 2022, 22, 2650-2659.	4.5	10
6	A Lipid-Inspired Highly Adhesive Interface for Durable Superhydrophobicity in Wet Environments and Stable Jumping Droplet Condensation. ACS Nano, 2022, 16, 4251-4262.	7.3	21
7	Slippery omniphobic covalently attached liquid coatings mitigate carbon deposition by autoxidation of jet fuel. Cell Reports Physical Science, 2022, 3, 100859.	2.8	3
8	Enabling Renewable Energy Technologies in Harsh Climates with Ultraâ€Efficient Electroâ€Thermal Desnowing, Defrosting, and Deicing. Advanced Functional Materials, 2022, 32, .	7.8	21
9	Machine learning enabled condensation heat transfer measurement. International Journal of Heat and Mass Transfer, 2022, 194, 123016.	2.5	15
10	Microscale Confinement and Wetting Contrast Enable Enhanced and Tunable Condensation. ACS Nano, 2022, 16, 9510-9522.	7.3	14
11	Ultrascalable Surface Structuring Strategy of Metal Additively Manufactured Materials for Enhanced Condensation. Advanced Science, 2022, 9, .	5.6	8
12	Wettability-defined frosting dynamics between plane fins in quiescent air. International Journal of Heat and Mass Transfer, 2021, 164, 120563.	2.5	22
13	Liquid film–induced critical heat flux enhancement on structured surfaces. Science Advances, 2021, 7,	4.7	36
14	Scalable and Resilient Etched Metallic Micro- and Nanostructured Surfaces for Enhanced Flow Boiling. ACS Applied Nano Materials, 2021, 4, 6648-6658.	2.4	23
15	Dropwise condensation of low surface tension fluids on lubricant-infused surfaces: Droplet size distribution and heat transfer. International Journal of Heat and Mass Transfer, 2021, 172, 121149.	2.5	34
16	Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nature Communications, 2021, 12, 5210.	5.8	89
17	A Deep Learning Perspective on Dropwise Condensation. Advanced Science, 2021, 8, e2101794.	5.6	16
18	Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 43489-43504.	4.0	20

Kazi Fazle Rabbi

#	Article	IF	CITATIONS
19	Scalable Corrosion-Resistant Coatings for Thermal Applications. ACS Applied Materials & Interfaces, 2021, 13, 4519-4534.	4.0	52
20	In situ jet electrolyte micromachining and additive manufacturing. Applied Physics Letters, 2021, 119, 171602.	1.5	8
21	Nanostructuring of Metallic Additively Manufactured Surfaces for Enhanced Jumping Droplet Condensation. , 2021, , .		1
22	Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. ACS Nano, 2020, 14, 12796-12809.	7.3	73
23	Transient pulse condensation. Applied Physics Letters, 2020, 117, 091602.	1.5	9
24	Pulse interfacial defrosting. Applied Physics Letters, 2019, 115, .	1.5	17
25	Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces. Nano Letters, 2019, 19, 5287-5296.	4.5	93
26	Thermal transport during thin-film argon evaporation over nanostructured platinum surface: A molecular dynamics study. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2018, 232, 83-91.	0.5	0
27	Atomistic modelling of thin film argon evaporation over different solid surfaces at different wetting conditions. Micro and Nano Letters, 2018, 13, 351-356.	0.6	15
28	Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement. AIP Conference Proceedings, 2017, , .	0.3	2
29	A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: Effect of liquid film thickness. AIP Conference Proceedings, 2017, , .	0.3	13
30	Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: Effect of solid-liquid interfacial wettability. AIP Conference Proceedings, 2017, , .	0.3	1
31	Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface. AIP Conference Proceedings, 2016, , .	0.3	9
32	Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid. AIP Conference Proceedings, 2016, , .	0.3	8
33	Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study. AlP Conference Proceedings, 2016, , .	0.3	5