Ronny Scherer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating the antecedents of university students' perceived ease of using the Internet for learning. Interactive Learning Environments, 2022, 30, 1060-1076.	4.4	42
2	Gender differences in information and communication technology use & skills: a systematic review and meta-analysis. Education and Information Technologies, 2022, 27, 4225-4258.	3.5	26
3	Teaching with technology: A large-scale, international, and multilevel study of the roles of teacher and school characteristics. Computers and Education, 2022, 179, 104424.	5.1	15
4	Analyzing International Large-Scale Assessment Data with a Hierarchical Approach. Springer International Handbooks of Education, 2022, , 1-55.	0.1	1
5	Uncovering everyday dynamics in students' perceptions of instructional quality with experience sampling. Learning and Instruction, 2022, 81, 101594.	1.9	1
6	Why We Need Systematic Reviews and Meta-Analyses in the Testing and Assessment Literature. European Journal of Psychological Assessment, 2022, 38, 73-77.	1.7	6
7	Research Review: Neuropsychological functioning in young anorexia nervosa: A metaâ€analysis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2022, 63, 616-625.	3.1	6
8	Ready, set, go! Profiling teachers' readiness for online teaching in secondary education. Technology, Pedagogy and Education, 2021, 30, 141-158.	3.3	82
9	Profiling teachers' readiness for online teaching and learning in higher education: Who's ready?. Computers in Human Behavior, 2021, 118, 106675.	5.1	205
10	Teachers' agency and online education in times of crisis. Computers in Human Behavior, 2021, 121, 106793.	5.1	92
11	Teachers' technology use for teaching: Comparing two explanatory mechanisms. Teaching and Teacher Education, 2021, 104, 103390.	1.6	17
12	Some Evidence on the Cognitive Benefits of Learning to Code. Frontiers in Psychology, 2021, 12, 559424.	1.1	4
13	Dimensional comparisons in the formation of domain-specific achievement goals Motivation Science, 2021, 7, 306-318.	1.2	10
14	Initial teacher training for twenty-first century skills in the Fourth Industrial Revolution (IR 4.0): A scoping review. Computers and Education, 2021, 170, 104223.	5.1	32
15	Neuropsychological functioning in adult anorexia nervosa: A meta-analysis. Neuroscience and Biobehavioral Reviews, 2021, 130, 214-226.	2.9	32
16	School innovativeness is associated with enhanced teacher collaboration, innovative classroom practices, and job satisfaction Journal of Educational Psychology, 2021, 113, 1645-1667.	2.1	37
17	All the same or different? Revisiting measures of teachers' technology acceptance. Computers and Education, 2020, 143, 103656.	5.1	46
18	Enhancing pre-service teachers' technological pedagogical content knowledge (TPACK): a mixed-method study. Educational Technology Research and Development, 2020, 68, 319-343.	2.0	72

#	Article	IF	CITATIONS
19	Identifying patterns of students' performance on simulated inquiry tasks using <scp>PISA</scp> 2015 logâ€file data. Journal of Research in Science Teaching, 2020, 57, 1400-1429.	2.0	27
20	Preschool pathways to reading comprehension: A systematic meta-analytic review. Educational Research Review, 2020, 30, 100323.	4.1	48
21	A meta-analysis of teaching and learning computer programming: Effective instructional approaches and conditions. Computers in Human Behavior, 2020, 109, 106349.	5.1	70
22	A tutorial on the meta-analytic structural equation modeling of reliability coefficients Psychological Methods, 2020, 25, 747-775.	2.7	8
23	The Case for Good Discipline? Evidence on the Interplay Between Disciplinary Climate, Socioeconomic Status, and Science Achievement from PISA 2015. , 2020, , 197-224.		6
24	Teachers' Role in Enhancing Equity—A Multilevel Structural Equation Modelling with Mediated Moderation. , 2020, , 173-196.		5
25	Identifying profiles of students' school climate perceptions using PISA 2015 data. Large-Scale Assessments in Education, 2020, 8, .	0.8	15
26	Closing the gaps? Differential effectiveness and accountability as a road to school improvement. School Effectiveness and School Improvement, 2019, 30, 255-260.	1.4	12
27	I Know I Can, but Do I Have the Time? The Role of Teachers' Self-Efficacy and Perceived Time Constraints in Implementing Cognitive-Activation Strategies in Science. Frontiers in Psychology, 2019, 10, 1697.	1.1	33
28	Editorial to the special section—Technology acceptance models: What we know and what we (still) do not know. British Journal of Educational Technology, 2019, 50, 2387-2393.	3.9	30
29	A latent profile analysis of adult students' online self-regulation in blended learning environments. Computers in Human Behavior, 2019, 99, 126-136.	5.1	57
30	The relation between students' socioeconomic status and ICT literacy: Findings from a meta-analysis. Computers and Education, 2019, 138, 13-32.	5.1	76
31	Unpacking teachers' intentions to integrate technology: A meta-analysis. Educational Research Review, 2019, 27, 90-109.	4.1	109
32	Teacher educators as gatekeepers: Preparing the next generation of teachers for technology integration in education. British Journal of Educational Technology, 2019, 50, 1189-1209.	3.9	118
33	Is there a gender gap? A meta-analysis of the gender differences in students' ICT literacy. Educational Research Review, 2019, 27, 205-217.	4.1	117
34	The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. Computers and Education, 2019, 128, 13-35.	5.1	713
35	The cognitive benefits of learning computer programming: A meta-analysis of transfer effects Journal of Educational Psychology, 2019, 111, 764-792.	2.1	78
36	More isn't always better: The curvilinear relationship between inquiry-based teaching and student achievement in science. Learning and Instruction, 2018, 56, 20-29.	1.9	81

#	Article	IF	CITATIONS
37	The Contribution of International Large-Scale Assessments to Educational Research: Combining Individual and Institutional Data Sources. Scandinavian Journal of Educational Research, 2018, 62, 368-385.	1.0	16
38	The importance of attitudes toward technology for pre-service teachers' technological, pedagogical, and content knowledge: Comparing structural equation modeling approaches. Computers in Human Behavior, 2018, 80, 67-80.	5.1	138
39	Perceived mastery climate, felt trust, and knowledge sharing. Journal of Organizational Behavior, 2018, 39, 429-447.	2.9	67
40	Special feature: advanced technologies in educational assessment. Behaviormetrika, 2018, 45, 451-455.	0.9	3
41	Complex Problem Solving and Its Position in the Wider Realm of the Human Intellect. Journal of Intelligence, 2018, 6, 5.	1.3	2
42	Observing the World Through Your Own Lenses – The Role of Perceived Adaptability for Epistemological Beliefs About the Development of Scientific Knowledge. Frontiers in Psychology, 2018, 9, 1006.	1.1	2
43	Still Comparing Apples With Oranges?. European Journal of Psychological Assessment, 2018, 34, 141-144.	1.7	45
44	Students' profiles of ICT use: Identification, determinants, and relations to achievement in a computer and information literacy test. Computers in Human Behavior, 2017, 70, 486-499.	5.1	70
45	On the quest for validity: Testing the factor structure and measurement invariance of the technology-dimensions in the Technological, Pedagogical, and Content Knowledge (TPACK) model. Computers and Education, 2017, 112, 1-17.	5.1	100
46	Moving beyond the study of gender differences: An analysis of measurement invariance and differential item functioning of an ICT literacy scale. Computers and Education, 2017, 113, 280-293.	5.1	20
47	The Quest for the Holy Grail of Validity in Science Assessments: A Comment on Kampa and Köller (2016) "German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skillsâ€: Science Education, 2017, 101, 845-853.	1.8	5
48	Intelligence in action – Effective strategic behaviors while solving complex problems. Intelligence, 2017, 64, 98-112.	1.6	27
49	Revealing the processes of students' interaction with a novel collaborative problem solving task: An in-depth analysis of think-aloud protocols. Computers in Human Behavior, 2017, 76, 509-525.	5.1	21
50	Some critical reflections on the special issue: Current innovations in computer-based assessments. Computers in Human Behavior, 2017, 76, 715-718.	5.1	6
51	"Sore eyes and distracted―or "excited and confident� – The role of perceived negative consequences of using ICT for perceived usefulness and self-efficacy. Computers and Education, 2017, 115, 188-200.	5.1	17
52	"Learning Science Is About Facts and Language Learning Is About Being Discursiveâ€â€"An Empirical Investigation of Students' Disciplinary Beliefs in the Context of Argumentation. Frontiers in Psychology, 2017, 8, 946.	1.1	9
53	A comprehensive investigation of TPACK within pre-service teachers' ICT profiles: Mind the gap!. Australasian Journal of Educational Technology, 2017, 33,	2.0	69
54	The Quest for Comparability: Studying the Invariance of the Teachers' Sense of Self-Efficacy (TSES) Measure across Countries. PLoS ONE, 2016, 11, e0150829.	1.1	24

#	Article	IF	CITATIONS
55	Evaluating Individual Students' Perceptions of Instructional Quality: An Investigation of their Factor Structure, Measurement Invariance, and Relations to Educational Outcomes. Frontiers in Psychology, 2016, 7, 110.	1.1	74
56	Bringing Formal and Informal Reasoning Together—A New Era of Assessment?. Frontiers in Psychology, 2016, 7, 1097.	1.1	13
57	Learning from the Past–The Need for Empirical Evidence on the Transfer Effects of Computer Programming Skills. Frontiers in Psychology, 2016, 7, 1390.	1.1	30
58	Taking a future perspective by learning from the past – A systematic review of assessment instruments that aim to measure primary and secondary school students' ICT literacy. Educational Research Review, 2016, 19, 58-84.	4.1	151
59	The relation between teachers' emphasis on the development of students' digital information and communication skills and computer self-efficacy: the moderating roles of age and gender. Large-Scale Assessments in Education, 2016, 4, .	0.8	22
60	The Relations Among School Climate, Instructional Quality, and Achievement Motivation in Mathematics. IEA Research for Education, 2016, , 51-80.	0.4	33
61	The role of ICT self-efficacy for students' ICT use and their achievement in a computer and information literacy test. Computers and Education, 2016, 102, 103-116.	5.1	152
62	Understanding students' performance in a computer-based assessment of complex problem solving: An analysis of behavioral data from computer-generated log files. Computers in Human Behavior, 2016, 61, 36-46.	5.1	99
63	Time for a new approach to prepare future teachers for educational technology use: Its meaning and measurement. Computers and Education, 2016, 94, 134-150.	5.1	153
64	Teachers' emphasis on developing students' digital information and communication skills (TEDDICS): A new construct in 21st century education. Computers and Education, 2016, 92-93, 1-14.	5.1	136
65	Student assessment of teaching as a source of information about aspects of teaching quality in multiple subject domains: an application of multilevel bifactor structural equation modeling. Frontiers in Psychology, 2015, 6, 1550.	1.1	43
66	Is it time for a new measurement approach? A closer look at the assessment of cognitive adaptability in complex problem solving. Frontiers in Psychology, 2015, 6, 1664.	1.1	16
67	The relations among openness, perseverance, and performance in creative problem solving: A substantive-methodological approach. Thinking Skills and Creativity, 2015, 18, 4-17.	1.9	25
68	The Big-Fish–Little-Pond-Effect revisited: Do different types of assessments matter?. Computers and Education, 2015, 80, 198-210.	5.1	20
69	Revisiting teachers' computer self-efficacy: A differentiated view on gender differences. Computers in Human Behavior, 2015, 53, 48-57.	5.1	89
70	Becoming more specific: Measuring and modeling teachers' perceived usefulness of ICT in the context of teaching and learning. Computers and Education, 2015, 88, 202-214.	5.1	139
71	Students' self-concept and self-efficacy in the sciences: Differential relations to antecedents and educational outcomes. Contemporary Educational Psychology, 2015, 41, 13-24.	1.6	158
72	Exploring the Relation between Time on Task and Ability in Complex Problem Solving. Intelligence, 2015, 48, 37-50.	1.6	55

#	Article	IF	CITATIONS
73	Measuring Students' Progressions in Scientific Problem Solving: A Psychometric Approach. Procedia, Social and Behavioral Sciences, 2014, 112, 87-96.	0.5	2
74	Developing a computer-based assessment of complex problem solving in Chemistry. International Journal of STEM Education, 2014, 1, .	2.7	14
75	Evidence on the effects of task interactivity and grade level on thinking skills involved in complex problem solving. Thinking Skills and Creativity, 2014, 11, 48-64.	1.9	18
76	The Development of Scientific Strategy Knowledge Across Grades. SAGE Open, 2014, 4, 215824401452207.	0.8	1
77	Further evidence on the structural relationship between academic self-concept and self-efficacy: On the effects of domain specificity. Learning and Individual Differences, 2013, 28, 9-19.	1.5	23
78	Factors of problem-solving competency in a virtual chemistry environment: The role of metacognitive knowledge about strategies. Computers and Education, 2012, 59, 1199-1214.	5.1	53
79	Measuring institutional support for online and blended learning professional development: validating an instrument that examines teachers' perceptions. International Journal of Research and Method in Education. 0 1-16.	1.1	4