
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research, 2006, 111, .	3.3	743
2	Multimodel estimates of intercontinental sourceâ€receptor relationships for ozone pollution. Journal of Geophysical Research, 2009, 114, .	3.3	430
3	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	1.9	353
4	The Global Atmospheric Environment for the Next Generation. Environmental Science & Technology, 2006, 40, 3586-3594.	4.6	338
5	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	1.9	317
6	Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research, 2010, 115, .	3.3	280
7	Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. Journal of Geophysical Research, 2006, 111, .	3.3	254
8	Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere. Geoscientific Model Development, 2009, 2, 43-57.	1.3	243
9	Tropospheric bromine chemistry and its impacts on ozone: A model study. Journal of Geophysical Research, 2005, 110, .	3.3	234
10	Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 2010, 10, 9451-9472.	1.9	215
11	Sea salt aerosol production and bromine release: Role of snow on sea ice. Geophysical Research Letters, 2008, 35, .	1.5	195
12	Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geoscientific Model Development, 2014, 7, 41-91.	1.3	191
13	Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. Journal of Geophysical Research, 2010, 115, .	3.3	171
14	Impact of climate change on tropospheric ozone and its global budgets. Atmospheric Chemistry and Physics, 2008, 8, 369-387.	1.9	166
15	Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Reviews of Geophysics, 2020, 58, e2019RG000675.	9.0	163
16	Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18447-18451.	3.3	161
17	Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	153
18	The increasing threat to stratospheric ozone from dichloromethane. Nature Communications, 2017, 8, 15962.	5.8	147

#	Article	IF	CITATIONS
19	Ozone perturbation experiments in a two-dimensional circulation model. Quarterly Journal of the Royal Meteorological Society, 1982, 108, 551-574.	1.0	143
20	Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmospheric Chemistry and Physics, 2006, 6, 575-599.	1.9	140
21	Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116, .	3.3	139
22	Global modeling of biogenic bromocarbons. Journal of Geophysical Research, 2006, 111, .	3.3	138
23	Effect of ozone depletion on atmospheric CH4 and CO concentrations. Nature, 1994, 371, 595-597.	13.7	131
24	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	1.9	130
25	Snow-sourced bromine and its implications for polar tropospheric ozone. Atmospheric Chemistry and Physics, 2010, 10, 7763-7773.	1.9	129
26	Strong influence of lowermost stratospheric ozone on lower tropospheric background ozone changes over Europe. Geophysical Research Letters, 2007, 34, .	1.5	128
27	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	1.9	128
28	The temperature dependence of the ozone concentration near the stratopause. Quarterly Journal of the Royal Meteorological Society, 1975, 101, 245-257.	1.0	125
29	A large ozone-circulation feedback and its implications for global warming assessments. Nature Climate Change, 2015, 5, 41-45.	8.1	115
30	Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model. Geophysical Research Letters, 2003, 30, .	1.5	112
31	Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model. Atmospheric Chemistry and Physics, 2008, 8, 1701-1712.	1.9	110
32	Modeling trace gas budgets in the troposphere: 1. Ozone and odd nitrogen. Journal of Geophysical Research, 1993, 98, 18377-18400.	3.3	108
33	The CO ₂ inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmospheric Chemistry and Physics, 2009, 9, 2793-2803.	1.9	103
34	Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nature Communications, 2015, 6, 7233.	5.8	99
35	Diffuse radiation, twilight, and photochemistry ? I. Journal of Atmospheric Chemistry, 1991, 13, 373-392.	1.4	98
36	Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	98

#	Article	IF	CITATIONS
37	A two-dimensional mean circulation model for the atmosphere below 80km. Quarterly Journal of the Royal Meteorological Society, 1975, 101, 723-747.	1.0	94
38	Influence of El Niño Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget. Geophysical Research Letters, 2005, 32, .	1.5	92
39	Evaluation of modeled O3using Measurement of Ozone by Airbus In-Service Aircraft (MOZAIC) data. Journal of Geophysical Research, 1998, 103, 25721-25737.	3.3	91
40	The World Avoided by the Montreal Protocol. Geophysical Research Letters, 2008, 35, .	1.5	90
41	Pathways and timescales for troposphere-to-stratosphere transport via the tropical tropopause layer and their relevance for very short lived substances. Journal of Geophysical Research, 2007, 112, .	3.3	88
42	Impact of perturbations to nitrogen oxide emissions from global aviation. Journal of Geophysical Research, 2008, 113, .	3.3	88
43	The role of microphysical and chemical processes in prolonging the climate forcing of the Toba Eruption. Geophysical Research Letters, 1996, 23, 2669-2672.	1.5	87
44	Effect of interannual meteorological variability on mid-latitude O3. Geophysical Research Letters, 1997, 24, 2993-2996.	1.5	86
45	Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3). Geoscientific Model Development, 2013, 6, 161-177.	1.3	84
46	Model sensitivity studies of Arctic ozone depletion. Journal of Geophysical Research, 1998, 103, 28389-28403.	3.3	83
47	A two-dimensional modeling study of the volcanic eruption of Mount Pinatubo. Journal of Geophysical Research, 1994, 99, 18861.	3.3	82
48	Impacts of HO _x regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	78
49	Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3196-3209.	1.8	78
50	Possible ozone reductions and UV changes at the Earth's surface. Nature, 1980, 286, 373-375.	13.7	75
51	Photochemical trajectory modeling studies of the North Atlantic region during August 1993. Journal of Geophysical Research, 1996, 101, 29269-29288.	3.3	75
52	Decline and recovery of total column ozone using a multimodel time series analysis. Journal of Geophysical Research, 2010, 115, .	3.3	74
53	Lightning NO _x , a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity. Atmospheric Chemistry and Physics, 2014, 14, 9871-9881.	1.9	74
54	Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.	1.5	74

#	Article	IF	CITATIONS
55	The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	73
56	Impact of stratospheric ozone recovery on tropospheric ozone and its budget. Geophysical Research Letters, 2010, 37, .	1.5	72
57	Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century. Atmospheric Chemistry and Physics, 2015, 15, 5123-5143.	1.9	70
58	Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience, 2008, 1, 592-596.	5.4	68
59	Using transport diagnostics to understand chemistry climate model ozone simulations. Journal of Geophysical Research, 2011, 116, .	3.3	68
60	Validation and intercomparison of wet and dry deposition schemes using210Pb in a global three-dimensional off-line chemical transport model. Journal of Geophysical Research, 1999, 104, 23761-23784.	3.3	67
61	Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. Journal of Geophysical Research, 2010, 115, .	3.3	67
62	Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. Journal of Geophysical Research, 2010, 115, .	3.3	66
63	Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmospheric Chemistry and Physics, 2016, 16, 2727-2746.	1.9	66
64	Stratospheric ozone depletion by CIONO2 photolysis. Nature, 1993, 365, 37-39.	13.7	65
65	Future Arctic ozone recovery: the importance of chemistry and dynamics. Atmospheric Chemistry and Physics, 2016, 16, 12159-12176.	1.9	63
66	Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model. Atmospheric Chemistry and Physics, 2014, 14, 11221-11246.	1.9	62
67	MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate. Advances in Science and Research, 2010, 4, 115-120.	1.0	62
68	Twoâ€dimensional assessment of the impact of aircraft sulphur emissions on the stratospheric sulphate aerosol layer. Journal of Geophysical Research, 1992, 97, 15839-15847.	3.3	58
69	Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nature Communications, 2019, 10, 5781.	5.8	58
70	Impact of West African Monsoon convective transport and lightning NO _x production upon the upper tropospheric composition: a multi-model study. Atmospheric Chemistry and Physics, 2010, 10, 5719-5738.	1.9	57
71	Stratospheric transport by stationary planetary waves - the importance of chemical processes. Quarterly Journal of the Royal Meteorological Society, 1980, 106, 421-446.	1.0	56
72	Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign. Journal of Geophysical Research, 2007, 112, .	3.3	55

#	Article	IF	CITATIONS
73	Bromoform in the tropical boundary layer of the Maritime Continent during OP3. Atmospheric Chemistry and Physics, 2011, 11, 529-542.	1.9	55
74	Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1028-1041.	1.2	55
75	Modeling trace gas budgets in the troposphere: 2. CH ₄ and CO. Journal of Geophysical Research, 1993, 98, 18401-18412.	3.3	54
76	Global multi-year O ₃ -CO correlation patterns from models and TES satellite observations. Atmospheric Chemistry and Physics, 2011, 11, 5819-5838.	1.9	54
77	The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate. Atmospheric Chemistry and Physics, 2014, 14, 13705-13717.	1.9	53
78	Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmospheric Chemistry and Physics, 2009, 9, 4251-4260.	1.9	52
79	Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds. Atmospheric Chemistry and Physics, 2010, 10, 2491-2506.	1.9	52
80	Measurement of the ¹³ C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.	1.9	52
81	Chemistryâ€climate model simulations of spring Antarctic ozone. Journal of Geophysical Research, 2010, 115, .	3.3	51
82	A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine. Atmospheric Chemistry and Physics, 2016, 16, 9163-9187.	1.9	51
83	Challenges for the recovery of the ozone layer. Nature Geoscience, 2019, 12, 592-596.	5.4	50
84	Stratospheric OClO measurements as a poor quantitative indicator of chlorine activation. Geophysical Research Letters, 1995, 22, 687-690.	1.5	49
85	Quantifying the Imprint of a Severe Hector Thunderstorm during ACTIVE/SCOUT-O3 onto the Water Content in the Upper Troposphere/Lower Stratosphere. Monthly Weather Review, 2009, 137, 2493-2514.	0.5	49
86	The impact of meteorology on the interannual growth rate of atmospheric methane. Geophysical Research Letters, 2002, 29, 8-1-8-4.	1.5	48
87	Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory – measurements and modelling. Atmospheric Chemistry and Physics, 2009, 9, 9083-9099.	1.9	48
88	Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. Environmental Research Letters, 2018, 13, 104016.	2.2	48
89	Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport. Atmospheric Chemistry and Physics, 2011, 11, 8103-8131.	1.9	46
90	Using GOME NO ₂ satellite data to examine regional differences in TOMCAT model performance. Atmospheric Chemistry and Physics, 2004, 4, 1895-1912.	1.9	45

#	Article	IF	CITATIONS
91	Highly vibrationally excited oxygen as a potential source of ozone in the upper stratosphere and mesosphere. Nature, 1991, 351, 217-219.	13.7	43
92	Implementation of a convective atmospheric boundary layer scheme in a tropospheric chemistry transport model. Journal of Geophysical Research, 1999, 104, 23729-23745.	3.3	43
93	A modified diabatic circulation model for stratospheric tracer transport. Nature, 1980, 287, 711-714.	13.7	42
94	Clouds, photolysis and regional tropospheric ozone budgets. Atmospheric Chemistry and Physics, 2009, 9, 8235-8246.	1.9	42
95	Multimodel estimates of atmospheric lifetimes of longâ€lived ozoneâ€depleting substances: Present and future. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2555-2573.	1.2	42
96	A calculation of the possible depletion of ozone by chlorofluorocarbons using a two-dimensional model. Pure and Applied Geophysics, 1980, 118, 355-377.	0.8	41
97	Validation of an off-line three-dimensional chemical transport model using observed radon profiles: 2. Model results. Journal of Geophysical Research, 1998, 103, 8433-8445.	3.3	40
98	Diagnosing ozone loss in the extratropical lower stratosphere. Journal of Geophysical Research, 2002, 107, ACH 3-1-ACH 3-11.	3.3	39
99	Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo. Atmospheric Chemistry and Physics, 2010, 10, 7117-7125.	1.9	39
100	Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.	1.9	39
101	Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons. Geophysical Research Letters, 2012, 39, .	1.5	38
102	Potential impact of combined NO _{<i>x</i>} and SO _{<i>x</i>} emissions from future high speed civil transport aircraft on stratospheric aerosols and ozone. Geophysical Research Letters, 1993, 20, 723-726.	1.5	37
103	Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone. Atmospheric Chemistry and Physics, 2014, 14, 1011-1024.	1.9	37
104	A two-dimensional calculation including atmospheric carbon dioxide and stratospheric ozone. Nature, 1979, 279, 222-224.	13.7	36
105	Model calculations of ozone depletion in the Arctic Polar Vortex for 1991/92 to 1994/95. Geophysical Research Letters, 1996, 23, 559-562.	1.5	36
106	Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	36
107	Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations. Atmospheric Chemistry and Physics, 2011, 11, 2765-2786.	1.9	36
108	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3177-3195.	1.8	36

#	Article	IF	CITATIONS
109	Rapid transport of East Asian pollution to the deep tropics. Atmospheric Chemistry and Physics, 2015, 15, 3565-3573.	1.9	36
110	Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances. Journal of Applied Phycology, 2013, 25, 1377-1386.	1.5	35
111	How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?. Atmospheric Chemistry and Physics, 2014, 14, 10431-10438.	1.9	34
112	Using <i>l´</i> ¹³ C-CH _{ and <i>l´</i>D-CH₄ to constrain Arctic methane emissions. Atmospheric Chemistry and Physics, 2016, 16, 14891-14908.}	4< 1.9	/sub>
113	Further estimates of radiative forcing due to tropospheric ozone changes. Geophysical Research Letters, 1996, 23, 3321-3324.	1.5	32
114	Changing ozone and changing circulation in northern mid-latitudes: Possible feedbacks?. Geophysical Research Letters, 2003, 30, .	1.5	32
115	NO _x and O ₃ above a tropical rainforest: an analysis with a global and box model. Atmospheric Chemistry and Physics, 2010, 10, 10607-10620.	1.9	32
116	Anthropogenic forcing of the Northern Annular Mode in CCMValâ€2 models. Journal of Geophysical Research, 2010, 115, .	3.3	32
117	Transport of short-lived species into the Tropical Tropopause Layer. Atmospheric Chemistry and Physics, 2012, 12, 6309-6322.	1.9	32
118	On the role of ozone feedback in the ENSO amplitude response under global warming. Geophysical Research Letters, 2017, 44, 3858-3866.	1.5	32
119	Upgrading photolysis in the p-TOMCAT CTM: model evaluation and assessment of the role of clouds. Geoscientific Model Development, 2009, 2, 59-72.	1.3	32
120	Heterogeneous reaction of N ₂ O ₅ with airborne TiO ₂ particles and its implication for stratospheric particle injection. Atmospheric Chemistry and Physics, 2014, 14, 6035-6048.	1.9	31
121	Global modelling of the total OH reactivity: investigations on the "missing―OH sink and its atmospheric implications. Atmospheric Chemistry and Physics, 2018, 18, 7109-7129.	1.9	31
122	Sensitivity of dynamics and ozone to different representations of SSTs in the Unified Model. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 2033-2045.	1.0	30
123	Increases in global tropospheric ozone following an El Niño event: examining stratospheric ozone variability as a potential driver. Atmospheric Science Letters, 2011, 12, 228-232.	0.8	30
124	Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model. Atmospheric Chemistry and Physics, 2014, 14, 3899-3912.	1.9	30
125	Shortâ€lived bromine compounds in the lower stratosphere; impact of climate change on ozone. Atmospheric Science Letters, 2009, 10, 201-206.	0.8	29
126	Circulation anomalies in the Southern Hemisphere and ozone changes. Atmospheric Chemistry and Physics, 2013, 13, 10677-10688.	1.9	29

#	Article	IF	CITATIONS
127	The Impact of Arctic Ozone Depletion on Northern Middle Latitudes: Interannual Variability and Dynamical Control. Journal of Atmospheric Chemistry, 2004, 47, 25-43.	1.4	27
128	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3210-3224.	1.8	27
129	Comparison and visualisation of high-resolution transport modelling with aircraft measurements. Atmospheric Science Letters, 2005, 6, 164-170.	0.8	26
130	Kick-starting ancient warming. Nature Geoscience, 2009, 2, 156-159.	5.4	26
131	Intercomparison of measured and modelled BrO slant column amounts for the Arctic winter and spring 1994/95. Geophysical Research Letters, 1999, 26, 1861-1864.	1.5	25
132	<i>μ</i> Dirac: an autonomous instrument for halocarbon measurements. Atmospheric Measurement Techniques, 2010, 3, 507-521.	1.2	25
133	Assessment of the breakup of the Antarctic polar vortex in two new chemistryâ€climate models. Journal of Geophysical Research, 2010, 115, .	3.3	25
134	Coordinated Airborne Studies in the Tropics (CAST). Bulletin of the American Meteorological Society, 2017, 98, 145-162.	1.7	25
135	The Impact of Stratospheric Ozone Feedbacks on Climate Sensitivity Estimates. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4630-4641.	1.2	25
136	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. Geoscientific Model Development, 2012, 5, 193-221.	1.3	24
137	Modelling the impact of megacities on local, regional and global tropospheric ozone and the deposition of nitrogen species. Atmospheric Chemistry and Physics, 2013, 13, 12215-12231.	1.9	24
138	The development and evaluation of airborne in situ N ₂ O and CH ₄ sampling using a quantum cascade laser absorption spectrometer (QCLAS). Atmospheric Measurement Techniques, 2016, 9, 63-77.	1.2	24
139	Diffuse radiation, twilight, and photochemistry ? II. Journal of Atmospheric Chemistry, 1991, 13, 393-406.	1.4	23
140	Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry–climate model. Atmospheric Chemistry and Physics, 2017, 17, 13801-13818.	1.9	23
141	Methane Emissions in a Chemistryâ€Climate Model: Feedbacks and Climate Response. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002019.	1.3	23
142	Stratospheric tracer transport: A modified diabatic circulation model. Quarterly Journal of the Royal Meteorological Society, 1984, 110, 219-237.	1.0	22
143	Future aircraft and global ozone. Nature, 1991, 354, 193-194.	13.7	22
144	A model study of the connection between polar and midlatitude ozone loss in the Northern Hemisphere lower stratosphere. Journal of Geophysical Research, 2002, 107, SOL 66-1-SOL 66-12.	3.3	22

#	Article	IF	CITATIONS
145	Measurements of δ ¹³ C in CH ₄ and using particle dispersion modeling to characterize sources of Arctic methane within an air mass. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14257-14270.	1.2	22
146	A cautionary tale: A study of a methane enhancement over the North Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7630-7645.	1.2	22
147	Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmospheric Chemistry and Physics, 2019, 19, 10087-10110.	1.9	22
148	A two-dimensional atmospheric chemistry modeling investigation of Earth's Phanerozoic O3and near-surface ultraviolet radiation history. Journal of Geophysical Research, 2007, 112, .	3.3	21
149	Modelling deep convection and its impacts on the tropical tropopause layer. Atmospheric Chemistry and Physics, 2010, 10, 11175-11188.	1.9	21
150	Estimates of tropical bromoform emissions using an inversion method. Atmospheric Chemistry and Physics, 2014, 14, 979-994.	1.9	21
151	Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions. Atmospheric Measurement Techniques, 2021, 14, 71-88.	1.2	21
152	Two-dimensional modelling of some CFC replacement compounds. Journal of Atmospheric Chemistry, 1996, 25, 167-199.	1.4	20
153	Climate/chemistry feedbacks and biogenic emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1727-1740.	1.6	20
154	Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09). Atmospheric Chemistry and Physics, 2014, 14, 8137-8148.	1.9	19
155	Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo. Atmospheric Chemistry and Physics, 2014, 14, 8369-8388.	1.9	19
156	On ozone trend detection: using coupled chemistry–climate simulations to investigate early signs of total column ozone recovery. Atmospheric Chemistry and Physics, 2018, 18, 7625-7637.	1.9	18
157	On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979–2010. Geophysical Research Letters, 2020, 47, e2019GL086901.	1.5	18
158	Dynamical variability in the modelling of chemistry–climate interactions. Faraday Discussions, 2005, 130, 27.	1.6	17
159	The impact of spatial averaging on calculated polar ozone loss: 2. Theoretical analysis. Journal of Geophysical Research, 1998, 103, 25409-25416.	3.3	16
160	How different would tropospheric oxidation be over an iceâ€free Arctic?. Geophysical Research Letters, 2009, 36, .	1.5	16
161	A global model study of the impact of land-use change in Borneo on atmospheric composition. Atmospheric Chemistry and Physics, 2013, 13, 9183-9194.	1.9	16
162	Heterogeneous reaction of ClONO ₂ with TiO ₂ and SiO ₂ aerosol particles: implications for stratospheric particle injection for climate engineering. Atmospheric Chemistry and Physics, 2016, 16, 15397-15412.	1.9	16

#	Article	IF	CITATIONS
163	Title is missing!. Journal of Atmospheric Chemistry, 2001, 39, 123-138.	1.4	15
164	Trajectory model studies of ClOxactivation during the 1991/92 northern hemispheric winter. Geophysical Research Letters, 1994, 21, 1419-1422.	1.5	14
165	Title is missing!. Journal of Atmospheric Chemistry, 1999, 34, 365-383.	1.4	14
166	In search of an ice core signal to differentiate between source-driven and sink-driven changes in atmospheric methane. Journal of Geophysical Research, 2011, 116, .	3.3	14
167	Methane mole fraction and $\hat{l}'(sup>13C$ above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics. Geophysical Research Letters, 2016, 43, 11,893.	1.5	14
168	The Influence of Zonally Asymmetric Stratospheric Ozone Changes on the Arctic Polar Vortex Shift. Journal of Climate, 2020, 33, 4641-4658.	1.2	14
169	Box model studies of ClOxdeactivation and ozone loss during the 1991/92 northern hemisphere winter. Geophysical Research Letters, 1994, 21, 1415-1418.	1.5	13
170	Might dimming the sun change atmospheric ENSO teleconnections as we know them?. Atmospheric Science Letters, 2011, 12, 184-188.	0.8	13
171	Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter. Atmospheric Chemistry and Physics, 2005, 5, 1423-1436.	1.9	12
172	A simple calculation of ozone depletion by chlorofluoromethanes using a two-dimensional model. Nature, 1978, 271, 42-43.	13.7	11
173	Theoretical interpretation of N ₂ O ₅ measurements. Geophysical Research Letters, 1991, 18, 1213-1216.	1.5	11
174	Some case studies of chlorine activation during the EASOE Campaign. Geophysical Research Letters, 1994, 21, 1431-1434.	1.5	11
175	DESCARTES: A novel lightweight balloon-borne instrument for measurement of halocarbons. Review of Scientific Instruments, 2000, 71, 271-280.	0.6	11
176	Characterising the effect of large-scale model resolution upon calculated OH production using MOZAIC data. Geophysical Research Letters, 2002, 29, 55-1.	1.5	11
177	The stratospheric response to changes in ozone and carbon dioxide as modelled with a GCM including parameterised ozone chemistry. Meteorologische Zeitschrift, 2006, 15, 343-354.	0.5	11
178	End-Permian ozone shield unaffected byÂoceanic hydrogen sulphide and methaneÂreleases. Nature Geoscience, 2008, 1, 247-252.	5.4	11
179	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	1.3	11
180	Night-time measurements of HO _{<i>x</i>} during the RONOCO project and analysis of the sources of HO ₂ . Atmospheric Chemistry and Physics, 2015, 15, 8179-8200.	1.9	11

#	Article	IF	CITATIONS
181	Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release. Atmospheric Measurement Techniques, 2018, 11, 1725-1739.	1.2	11
182	Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14188-14200.	1.2	10
183	iDirac: a field-portable instrument for long-term autonomous measurements of isoprene and selected VOCs. Atmospheric Measurement Techniques, 2020, 13, 821-838.	1.2	10
184	Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery. Atmospheric Chemistry and Physics, 2020, 20, 7153-7166.	1.9	10
185	CAN SEAWEED FARMING IN THE TROPICS CONTRIBUTE TO CLIMATE CHANGE THROUGH EMISSION OF SHORT-LIVED HALOCARBONS?. Malaysian Journal of Science, 2015, 34, 8-19.	0.2	10
186	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 31-71.	1.4	9
187	Ozone concentration changes in the Asian summer monsoon anticyclone and lower stratospheric water vapour: An idealised model study. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	9
188	Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8. Geoscientific Model Development, 2018, 11, 3089-3108.	1.3	9
189	A case study in forecasting the stratospheric vortex during EASOE. Geophysical Research Letters, 1994, 21, 1451-1454.	1.5	8
190	Prescribing Zonally Asymmetric Ozone Climatologies in Climate Models: Performance Compared to a Chemistry limate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 918-933.	1.3	8
191	Diagnosis of mixing between middle latitudes and the polar vortex from tracer-tracer correlations. Journal of Geophysical Research, 2002, 107, ACH 1-1-ACH 1-19.	3.3	7
192	Cumulative mixing inferred from stratospheric tracer relationships. Journal of Geophysical Research, 2002, 107, SOL 64-1-SOL 64-16.	3.3	7
193	Trend analysis of CTM-derived northern hemisphere winter total ozone using self-consistent proxies: How well can we explain dynamically induced trends?. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1969-1983.	1.0	7
194	Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability. Atmospheric Chemistry and Physics, 2019, 19, 5209-5233.	1.9	7
195	Subsonic aircraft and ozone trends. Journal of Atmospheric Chemistry, 1996, 23, 89-105.	1.4	6
196	On the emissions and transport of bromoform: sensitivity to model resolution and emission location. Atmospheric Chemistry and Physics, 2015, 15, 14031-14040.	1.9	6
197	Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century. Atmospheric Chemistry and Physics, 2018, 18, 2899-2911.	1.9	6
198	Global Air Quality, past present and future: an introduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190323.	1.6	6

#	Article	IF	CITATIONS
199	The bliss measurements of NO ₂ : Some new insights. Geophysical Research Letters, 1991, 18, 2261-2263.	1.5	5
200	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 195-227.	1.4	5
201	Sensitivity of the midâ€winter Arctic stratosphere to QBO width in a simplified chemistry–climate model. Atmospheric Science Letters, 2011, 12, 268-272.	0.8	5
202	Sensitivity of tropical deep convection in global models: effects of horizontal resolution, surface constraints, and <scp>3D</scp> atmospheric nudging. Atmospheric Science Letters, 2015, 16, 148-154.	0.8	5
203	Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative. , 2019, 19, 10087-10110.		5
204	Reply [to "Comment on â€~Stratospheric OCIO measurements as a poor quantitative indicator of chlorine activation' by J. Sessler, M.P. Chipperfield, J. A. Pyle, And R. Toumiâ€]. Geophysical Research Letters, 1996, 23, 1055-1055.	1.5	4
205	A change in the calculated impact of supersonic aircraft NO <i>_x</i> emissions on the atmosphere. Aeronautical Journal, 2007, 111, 311-314.	1.1	4
206	Are the Fenno-Scandinavian Arctic Wetlands a Significant Regional Source of Formic Acid?. Atmosphere, 2017, 8, 112.	1.0	4
207	Title is missing!. Journal of Atmospheric Chemistry, 2001, 40, 123-170.	1.4	3
208	Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing. Atmospheric Chemistry and Physics, 2019, 19, 9833-9846.	1.9	3
209	Ozone perturbation experiments in a two-dimensional circulation model. Quarterly Journal of the Royal Meteorological Society, 1982, 108, 551-574.	1.0	3
210	The Quadrennial Ozone Symposium 2016. Advances in Atmospheric Sciences, 2017, 34, 283-288.	1.9	2
211	Joe Farman (1930–2013). Nature, 2013, 498, 435-435.	13.7	1
212	Using Machine Learning to Make Computationally Inexpensive Projections of 21st Century Stratospheric Column Ozone Changes in the Tropics. Frontiers in Earth Science, 2021, 8, .	0.8	1
213	Rising methane: is warming feeding warming?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200459.	1.6	0