Mathilde Bonnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918622/publications.pdf

Version: 2024-02-01

279487 315357 2,736 38 23 38 citations h-index g-index papers 40 40 40 4100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microbes, 2022, 14, 2022997.	4.3	19
2	Gut Microbiota as Potential Biomarker and/or Therapeutic Target to Improve the Management of Cancer: Focus on Colibactin-Producing Escherichia coli in Colorectal Cancer. Cancers, 2021, 13, 2215.	1.7	29
3	Autophagy of Intestinal Epithelial Cells Inhibits Colorectal Carcinogenesis Induced by Colibactin-Producing Escherichia coli in Apc Mice. Gastroenterology, 2020, 158, 1373-1388.	0.6	53
4	Fecal dysbiosis associated with colonic hypersensitivity and behavioral alterations in chronically Blastocystis-infected rats. Scientific Reports, 2020, 10, 9146.	1.6	27
5	Colibactinâ€positive <scp><i>Escherichia coli</i></scp> induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. International Journal of Cancer, 2020, 146, 3147-3159.	2.3	59
6	Prognostic value of a combination of innovative factors (gut microbiota, sarcopenia, obesity,) Tj ETQq0 0 0 rgBT colorectal cancer: a prospective cohort study protocol (METABIOTE). BMJ Open, 2020, 10, e031472.	Overlock 0.8	2 10 Tf 50 547 8
7	Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment?. International Journal of Molecular Sciences, 2019, 20, 4584.	1.8	72
8	Targeting the Tetraspanins with Monoclonal Antibodies in Oncology: Focus on Tspan8/Co-029. Cancers, 2019, 11, 179.	1.7	21
9	Efficient and reproducible experimental infections of rats with Blastocystis spp PLoS ONE, 2018, 13, e0207669.	1.1	8
10	Deciphering the immune microenvironment of a tissue by digital imaging and cognition network. Scientific Reports, 2018, 8, 16692.	1.6	6
11	Microbial markers in colorectal cancer detection and/or prognosis. World Journal of Gastroenterology, 2018, 24, 2327-2347.	1.4	84
12	Interactions between microsatellite instability and human gut colonization by <i>Escherichia coli</i> in colorectal cancer. Clinical Science, 2017, 131, 471-485.	1.8	35
13	Molecular Mechanism Underlying the Actions of Antioxidant Molecules in Digestive Disorders. , 2017, , 197-216.		5
14	Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer. Oncotarget, 2017, 8, 22034-22047.	0.8	25
15	Association of colorectal cancer with pathogenic <i>Escherichia coli</i> : Focus on mechanisms using optical imaging. World Journal of Clinical Oncology, 2016, 7, 293.	0.9	53
16	Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology, 2016, 22, 501.	1.4	578
17	[1231]ICF01012 melanoma imaging and [1311]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models. European Journal of Dermatology, 2015, 25, 29-35.	0.3	15
18	Colon cancer-associated B2 <i>Escherichia coli</i> colonize gut mucosa and promote cell proliferation. World Journal of Gastroenterology, 2014, 20, 6560.	1.4	125

#	Article	IF	CITATIONS
19	Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand. Physics in Medicine and Biology, 2014, 59, 2183-2198.	1.6	19
20	Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut, 2014, 63, 1932-1942.	6.1	354
21	Colonization of the Human Gut by <i>E. coli</i> and Colorectal Cancer Risk. Clinical Cancer Research, 2014, 20, 859-867.	3.2	363
22	Annexin A1 in primary tumors promotes melanoma dissemination. Clinical and Experimental Metastasis, 2014, 31, 749-760.	1.7	45
23	<i>ln vivo</i> efficacy of melanoma internal radionuclide therapy with a ¹³¹ lâ€labelled melaninâ€targeting heteroarylcarboxamide molecule. International Journal of Cancer, 2013, 133, 1042-1053.	2.3	25
24	Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [18F]ICF01006, a highly promising melanoma PET tracer. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1449-1461.	3.3	24
25	Single Photon Emission Computed Tomography/Positron Emission Tomography Imaging and Targeted Radionuclide Therapy of Melanoma: New Multimodal Fluorinated and Iodinated Radiotracers. Journal of Medicinal Chemistry, 2011, 54, 2745-2766.	2.9	20
26	Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 125I, an Auger electron emitter. Investigational New Drugs, 2011, 29, 1253-1263.	1.2	19
27	B16 melanoma secretomes and in vitro invasiveness: syntenin as an invasion modulator. Melanoma Research, 2010, 20, 77-84.	0.6	16
28	Study ofÂfibroblast gene expression inÂresponse toÂoxidative stress induced byÂhydrogen peroxide orÂUVA withÂskin aging. European Journal of Dermatology, 2010, 20, 308-320.	0.3	9
29	Antiâ€melanoma efficacy of internal radionuclide therapy in relation to melanin target distribution. Pigment Cell and Melanoma Research, 2010, 23, e1-11.	1.5	24
30	The Use of [1251] Scintigraphic In Vivo Imaging in Melanoma-Bearing Mice for a Rapid Prescreening of Vectors to Melanoma Tissue. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24, 629-636.	0.7	6
31	Targeted radionuclide therapy of melanoma: Antiâ€tumoural efficacy studies of a new ¹³¹ l labelled potential agent. International Journal of Cancer, 2009, 125, 708-716.	2.3	44
32	Proteomic studies of B16 lines: Involvement of Annexin A1 in melanoma dissemination. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 61-69.	1.1	38
33	DNA repair capacities of cutaneous fibroblasts: effect of sun exposure, age and smoking on response to an acute oxidative stress. British Journal of Dermatology, 2007, 157, 26-32.	1.4	35
34	Decreased expression of keratinocyte beta1 integrins in chronically sun-exposed skin in vivo. British Journal of Dermatology, 2003, 148, 770-778.	1.4	52
35	Photoageing shows histological features of chronic skin inflammation without clinical and molecular abnormalities. British Journal of Dermatology, 2003, 149, 826-835.	1.4	89
36	RESPONSE: Absence of the Epstein-Barr Virus Genome in Breast Cancer-Derived Cell Lines. Journal of the National Cancer Institute, 2003, 95, 1254-1255.	3.0	1

4	#	Article	IF	CITATIONS
	37	Detection of Epstein-Barr Virus in Invasive Breast Cancers. Journal of the National Cancer Institute, 1999, 91, 1376-1381.	3.0	287
	38	Amino-acid change in the Epstein-Barr-virus zebra protein in undifferentiated nasopharyngeal carcinomas from Europe and North Africa., 1998, 75, 497-503.		30