
Ivan A Bratchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comment on "Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning― Artificial Intelligence in Medicine, 2022, 125, 102252.	6.5	2
2	Classification of skin cancer using convolutional neural networks analysis of Raman spectra. Computer Methods and Programs in Biomedicine, 2022, 219, 106755.	4.7	28
3	Raman spectroscopy of human skin for kidney failure detection. Journal of Biophotonics, 2021, 14, e202000360.	2.3	15
4	<i>In vivo</i> diagnosis of skin cancer with a portable Raman spectroscopic device. Experimental Dermatology, 2021, 30, 652-663.	2.9	30
5	Comment on "Combining derivative Raman with autofluorescence to improve the diagnosis performance of echinococcosis― Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119514.	3.9	5
6	Optical Biopsy of Amelanotic Melanoma with Raman and Autofluorescence Spectra Stimulated by 785 nm Laser Excitation. Journal of Biomedical Photonics and Engineering, 2021, 7, 020308.	0.7	9
7	On the effect of excessive solar exposure on human skin: Confocal Raman spectroscopy as a tool to assess advanced glycation end products: Comment. Vibrational Spectroscopy, 2021, 115, 103268.	2.2	1
8	Raman spectroscopy based diagnosis of dermatofibrosarcoma protuberans: Case report. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102351.	2.6	2
9	Comment on "Use of Raman spectroscopy in the assessment of skin after CO ₂ ablative fractional laser surgery on acne scars― Skin Research and Technology, 2020, 26, 146-147.	1.6	Ο
10	Comparative study of multivariative analysis methods of blood Raman spectra classification. Journal of Raman Spectroscopy, 2020, 51, 279-292.	2.5	8
11	Modeling of Fiber Optic Probes for Selective Fluorescence Sensing of Multilayered Biological Tissues. Journal of Applied Spectroscopy, 2020, 87, 112-120.	0.7	3
12	Near-infrared autofluorescence spectroscopy of pigmented benign and malignant skin lesions. Optical Engineering, 2020, 59, 1.	1.0	15
13	Comparison testing of machine learning algorithms separability on Raman spectra of skin cancer. , 2020, , .		2
14	Conventional Raman and surface-enhanced Raman spectroscopy for human skin components analysis. , 2020, , .		1
15	The study of ex vivo and in vivo skin neoplasms using near-infrared fluorescence spectroscopy. , 2020, , .		Ο
16	Raman Spectroscopy Techniques for Skin Cancer Detection and Diagnosis. , 2020, , 359-393.		2
17	Application of Acousto-Optical Hyperspectral Imaging for Skin Cancer Diagnostics. , 2020, , 505-536.		1
18	Fiber probe configurations simulation for depth-resolved skin fluorescence registration. , 2020, , .		0

#	Article	IF	CITATIONS
19	Additive simulation of Raman light scattering from skin cancer using the Monte Carlo method. , 2020, , .		1
20	Multiparametric spectral diagnosis of skin cancer. , 2020, , .		0
21	Possibilities for decomposing Raman spectra of amino acids mixture by Multivariate Curve Resolution (MCR) analysis. , 2020, , .		1
22	Optical biopsy of skin cancer based on Raman and fluorescence spectroscopy. , 2020, , .		1
23	Multispectral fluorescence detection of pigmented cutaneous tumours. , 2020, , .		1
24	Multimodal Optical Biopsy and Imaging of Skin Cancer. , 2019, , 449-476.		3
25	In vivo Raman and autofluorescence study of the pigmented skin neoplasms. Journal of Physics: Conference Series, 2019, 1368, 022059.	0.4	1
26	Conventional Raman and surface-enhanced Raman spectroscopy of ascitic fluid. Journal of Physics: Conference Series, 2019, 1368, 022032.	0.4	0
27	Multivariate analysis of tissues Raman spectra using regression methods. Journal of Physics: Conference Series, 2019, 1368, 022042.	0.4	0
28	Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis. Journal of Biophotonics, 2019, 12, e201800400.	2.3	36
29	Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools: comment. Biomedical Optics Express, 2019, 10, 4489.	2.9	2
30	Hyperspectral in vivo analysis of normal skin chromophores and visualization of oncological pathologies. Computer Optics, 2019, 43, .	2.2	12
31	Multispectral autoflourescence detection of skin neoplasia using steady-state techniques. , 2019, , .		1
32	Research of laser beam profile structure dependence on micro-lensed optical fiber configuration. , 2019, , .		0
33	Development of alternative fiber optic Raman probes based on optical fibers with written precision micro-structure defects. Journal of Physics: Conference Series, 2018, 1096, 012008.	0.4	0
34	An Acousto-Optic Hyperspectral Unit for Histological Study of Microscopic Objects. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 1074-1080.	0.6	5
35	Analysis of correlation between Raman and autofluorescence human skin response in visible and NIR region. Journal of Physics: Conference Series, 2018, 1096, 012006.	0.4	0
36	Raman spectroscopy for kidney tissue and its neoplasms research. Journal of Physics: Conference Series, 2018, 1096, 012116.	0.4	1

#	Article	IF	CITATIONS
37	Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer. , 2018, , .		2
38	Modeling of skin cancer dermatoscopy images. , 2018, , .		0
39	Analysis of 3D OCT images for diagnosis of skin tumors. , 2018, , .		1
40	Experimental research of fusion splicer software settings impact on micro-lensed optical fiber configuration and geometry parameters. , 2018, , .		0
41	In vivo NIR Raman and autofluorescence spectroscopies of skin neoplasms. , 2018, , .		0
42	Combined Raman and autofluorescence <i>ex vivo</i> diagnostics of skin cancer in near-infrared and visible regions. Journal of Biomedical Optics, 2017, 22, 027005.	2.6	43
43	Raman spectroscopy of skin neoplasms. AIP Conference Proceedings, 2017, , .	0.4	Ο
44	Optical diagnostics of malignant and benign skin neoplasms. Procedia Engineering, 2017, 201, 141-147.	1.2	6
45	Multimodal Method of Virtual Biopsy for Skin Cancer Diagnosis. , 2017, , .		Ο
46	Raman spectra analysis of human blood protein fractions using the projection on latent structures method. , 2017, , .		4
47	Multimodal texture analysis of OCT images as a diagnostic application for skin tumors. Journal of Biomedical Photonics and Engineering, 2017, 3, 010307.	0.7	8
48	Multiple analyze on 3D-OCT images of skin cancer. , 2017, , .		0
49	Deep learning on OCT images of skin cancer. , 2017, , .		2
50	The combination of Raman spectroscopy and Autofluorescence analysis for estimation of blood and urine homeostasis. , 2017, , .		0
51	2D Fourier Fractal Analysis of Skin Tumor with Spectral Domain Optical Coherence Tomography. , 2017, , .		Ο
52	In Vivo Diagnostics of Malignant and Benign Tumors with Low-Cost Raman Spectrometer. , 2017, , .		1
53	Microscopic and macroscopic spectral peculiarities of cutaneous tumours. , 2017, , .		0
54	Hyperspectral imaging of skin and lung cancers. Proceedings of SPIE, 2016, , .	0.8	5

Ivan A Bratchenko

#	Article	IF	CITATIONS
55	Fluorescence spectroscopy for neoplasms control. Proceedings of SPIE, 2016, , .	0.8	2
56	Comparison of Raman spectroscopy equipment for tissues and biofluids analysis. , 2016, , .		1
57	Blood proteins analysis by Raman spectroscopy method. , 2016, , .		5
58	<i>In vivo</i> hyperspectral imaging and differentiation of skin cancer. Proceedings of SPIE, 2016, , .	0.8	17
59	Skin cancer texture analysis of OCT images based on Haralick, fractal dimension, Markov random field features, and the complex directional field features. , 2016, , .		5
60	NIR autofluorescence skin tumor diagnostics. , 2016, , .		2
61	Skin cancer texture analysis of OCT images based on Haralick, fractal dimension and the complex directional field features. Proceedings of SPIE, 2016, , .	0.8	3
62	Medical images classification for skin cancer using quantitative image features with optical coherence tomography. Journal of Innovative Optical Health Sciences, 2016, 09, 1650003.	1.0	20
63	Hyperspectral visualization of skin pathologies in visible region. Computer Optics, 2016, 40, 240-248.	2.2	20
64	Dermoscopy analysis of RGB-images based on comparative features. , 2015, , .		2
65	Investigation of changes in fractal dimension from layered retinal structures of healthy and diabetic eyes with optical coherence tomography. Proceedings of SPIE, 2015, , .	0.8	1
66	Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions. , 2015, , .		2
67	Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers. Journal of Biomedical Optics, 2015, 20, 025003.	2.6	38
68	Complex optical method of cancer detection and visualization. , 2015, , .		0
69	Skin neoplasm diagnostics using combined spectral method in visible and near infrared regions. , 2015, , .		0
70	Lung neoplasm diagnostics using Raman spectroscopy and autofluorescence analysis. Journal of Biomedical Photonics and Engineering, 2015, 1, 70-76.	0.7	6
71	The Empirical Mode Decomposition algorithm via Fast Fourier Transform. , 2014, , .		1
72	Multimodal diagnosis and visualisation of oncologic pathologies. Quantum Electronics, 2014, 44, 726-731.	1.0	4

#	Article	IF	CITATIONS
73	Advances in tumor diagnosis using OCT and Raman spectroscopy. , 2014, , .		4
74	Two-step Raman spectroscopy method for tumor diagnosis. Proceedings of SPIE, 2014, , .	0.8	3
75	Combined Raman spectroscopy and autofluoresence imaging method for <i>in vivo</i> skin tumor diagnosis. Proceedings of SPIE, 2014, , .	0.8	7
76	A complex noise reduction method for improving visualization of SD-OCT skin biomedical images. Proceedings of SPIE, 2014, , .	0.8	1
77	NOISE REDUCTION METHOD FOR OCT IMAGES BASED ON EMPIRICAL MODE DECOMPOSITION. Journal of Innovative Optical Health Sciences, 2013, 06, 1350009.	1.0	7
78	Diagnostics of skin pathologies based on spectral analysis of backward and raman scattering. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 182-186.	0.6	5
79	COMPLEX OPTICAL CHARACTERIZATION OF MESH IMPLANTS AND ENCAPSULATION AREA. Journal of Innovative Optical Health Sciences, 2013, 06, 1350007.	1.0	7
80	Application of confocal laser microscopy for monitoring mesh implants in herniology. Quantum Electronics, 2011, 41, 318-323.	1.0	4
81	Optical methods for ecological mapping of urban areas. Bulletin of the Lebedev Physics Institute, 2010, 37, 222-226.	0.6	0
82	Optical model of plant tissue. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 0.6	50,382 Td (S
83	Modeling of optical radiation energy distribution in plant tissue. Optics and Spectroscopy (English) Tj ETQq1 1 0	.784314 r 0.6	gBŢ ¦Overlo <mark>c</mark> i
84	<title>Spectral kinetics of plant tissues</title> ., 2007, 6535, 511.		0
85	3D simulation of plant and living tissue superficial lesions. , 2007, 7022, 254.		0
86	Malignant melanoma and basal cell carcinoma detection with 457 nm laser-induced fluorescence. Journal of Biomedical Photonics and Engineering, 0, , 180-185.	0.7	8

87 Method of autofluorescence diagnostics of skin neoplasms in the near infrared region. Journal of 0.7 12 Biomedical Photonics and Engineering, 0, , 186-192.