Brian J Cummings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8918059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Online seminars as an information source for direct-to-consumer stem cell therapy. Regenerative Medicine, 2022, 17, 81-90.	1.7	5
2	The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms. Neural Regeneration Research, 2022, 17, 2351.	3.0	2
3	Freshly Thawed Cryobanked Human Neural Stem Cells Engraft within Endogenous Neurogenic Niches and Restore Cognitive Function after Chronic Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2731-2746.	3.4	6
4	Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Scientific Reports, 2020, 10, 19500.	3.3	3
5	Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model. Tissue Engineering - Part A, 2020, 26, 672-682.	3.1	27
6	Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14947-14954.	7.1	83
7	Development of a Chimeric Model to Study and Manipulate Human Microglia InÂVivo. Neuron, 2019, 103, 1016-1033.e10.	8.1	218
8	PLG Bridge Implantation in Chronic SCI Promotes Axonal Elongation and Myelination. ACS Biomaterials Science and Engineering, 2019, 5, 6679-6690.	5.2	5
9	Combinatorial lentiviral gene delivery of proâ€oligodendrogenic factors forÂimprovingÂmyelination of regenerating axons after spinal cord injury. Biotechnology and Bioengineering, 2019, 116, 155-167.	3.3	13
10	Aligned hydrogel tubes guide regeneration following spinal cord injury. Acta Biomaterialia, 2019, 86, 312-322.	8.3	83
11	Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Molecular Therapy, 2018, 26, 1756-1770.	8.2	56
12	Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells – Tools for analyzing dynamics of cell cycle, migration, and lineage selection. Methods, 2018, 133, 81-90.	3.8	29
13	Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. Journal of Controlled Release, 2018, 290, 88-101.	9.9	49
14	Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury. Tissue Engineering - Part A, 2018, 24, 1588-1602.	3.1	15
15	Repeated Mild Closed Head Injuries Induce Long-Term White Matter Pathology and Neuronal Loss That Are Correlated With Behavioral Deficits. ASN Neuro, 2018, 10, 175909141878192.	2.7	45
16	Feasibility study on mouse live imaging after spinal cord injury and poly(lactide-co-glycolide) bridge implantation. Journal of Biomedical Optics, 2018, 23, 1.	2.6	6
17	Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study ofÂCervical Spinal Cord Injury. Stem Cell Reports, 2017, 8, 249-263	4.8	76
18	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 2017, 94, 278-293.e9.	8.1	730

#	Article	IF	CITATIONS
19	Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury. Stem Cell Reports, 2017, 8, 1534-1548.	4.8	30
20	Response to StemCells Inc Stem Cell Reports, 2017, 8, 195-197.	4.8	6
21	Effects of Human ES-Derived Neural Stem Cell Transplantation and Kindling in a Rat Model of Traumatic Brain Injury. Cell Transplantation, 2017, 26, 1247-1261.	2.5	24
22	Neutrophils Induce Astroglial Differentiation and Migration of Human Neural Stem Cells via C1q and C3a Synthesis. Journal of Immunology, 2017, 199, 1069-1085.	0.8	25
23	Effects of concussion on the blood–brain barrier in humans and rodents. Journal of Concussion, 2017, 1, 205970021668451.	0.6	21
24	Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Experimental Neurology, 2016, 281, 1-16.	4.1	71
25	Achieving Informed Consent for Cellular Therapies: A Preclinical Translational Research Perspective on Regulations versus a Dose of Reality. Journal of Law, Medicine and Ethics, 2016, 44, 394-401.	0.9	7
26	Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation. Stem Cell Research and Therapy, 2015, 6, 93.	5.5	33
27	Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury. Stem Cell Research, 2015, 15, 341-353.	0.7	32
28	Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Biomaterials, 2015, 65, 1-12.	11.4	61
29	A meta-analysis of efficacy in pre-clinical human stem cell therapies for traumatic brain injury. Experimental Neurology, 2015, 273, 225-233.	4.1	24
30	Stem cell therapies for traumatic brain injury. Regenerative Medicine, 2015, 10, 917-920.	1.7	8
31	CD133-enriched Xeno-Free human embryonic-derived neural stem cells expand rapidly in culture and do not form teratomas in immunodeficient mice. Stem Cell Research, 2014, 13, 214-226.	0.7	13
32	Long-Term Characterization of Axon Regeneration and Matrix Changes Using Multiple Channel Bridges for Spinal Cord Regeneration. Tissue Engineering - Part A, 2014, 20, 1027-1037.	3.1	29
33	Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xenoâ€free conditions. Journal of Comparative Neurology, 2014, 522, 2767-2783.	1.6	14
34	Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integrative Biology (United Kingdom), 2014, 6, 694-705.	1.3	63
35	Injury to the Spinal Cord Niche Alters the Engraftment Dynamics of Human Neural Stem Cells. Stem Cell Reports, 2014, 2, 620-632.	4.8	41
36	Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury. Biomaterials, 2013, 34, 2213-2220.	11.4	73

#	Article	IF	CITATIONS
37	Immunosuppressants Affect Human Neural Stem Cells In Vitro but Not in an In Vivo Model of Spinal Cord Injury. Stem Cells Translational Medicine, 2013, 2, 731-744.	3.3	27
38	Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regenerative Medicine, 2013, 8, 483-516.	1.7	74
39	Safety of Human Neural Stem Cell Transplantation in Chronic Spinal Cord Injury. Stem Cells Translational Medicine, 2013, 2, 961-974.	3.3	46
40	Safety of Epicenter Versus Intact Parenchyma as a Transplantation Site for Human Neural Stem Cells for Spinal Cord Injury Therapy. Stem Cells Translational Medicine, 2013, 2, 204-216.	3.3	43
41	Human Neural Stem Cells Induce Functional Myelination in Mice with Severe Dysmyelination. Science Translational Medicine, 2012, 4, 155ra136.	12.4	111
42	Detection of Mutant Huntingtin Aggregation Conformers and Modulation of SDS-Soluble Fibrillar Oligomers by Small Molecules. Journal of Huntington's Disease, 2012, 1, 119-132.	1.9	24
43	Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials, 2012, 33, 1618-1626.	11.4	103
44	Computer-Aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software. Stem Cell Research, 2011, 7, 256-263.	0.7	9
45	A visual navigation system for querying neural stem cell imaging data. , 2011, , .		1
46	Robust Segmentation and Tracking of Generic Shapes of Neuro-stem Cells. , 2011, , .		0
47	Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient?. Regenerative Medicine, 2011, 6, 367-406.	1.7	82
48	Comparison of Immunopathology and Locomotor Recovery in C57BL/6, BUB/BnJ, and NOD-SCID Mice after Contusion Spinal Cord Injury. Journal of Neurotrauma, 2010, 27, 411-421.	3.4	34
49	Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model. PLoS ONE, 2010, 5, e12272.	2.5	182
50	Analysis of Host-Mediated Repair Mechanisms after Human CNS-Stem Cell Transplantation for Spinal Cord Injury: Correlation of Engraftment with Recovery. PLoS ONE, 2009, 4, e5871.	2.5	97
51	Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response. Tissue Engineering - Part A, 2009, 15, 3283-3295.	3.1	56
52	Plasmid Releasing Multiple Channel Bridges for Transgene Expression After Spinal Cord Injury. Molecular Therapy, 2009, 17, 318-326.	8.2	58
53	Long-Term, Stable Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors Grafted into the Adult Mammalian Neostriatum. Stem Cells, 2009, 27, 2414-2426.	3.2	52
54	Human Neural Stem Cell–Mediated Repair of the Contused Spinal Cord: Timing the Microenvironment. , 2008, , 297-322.		2

4

#	Article	IF	CITATIONS
55	Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Behavioural Brain Research, 2007, 177, 232-241.	2.2	71
56	BioVision: An application for the automated image analysis of histological sections. Neurobiology of Aging, 2006, 27, 1462-1476.	3.1	31
57	Comparative non-radioactive RT-PCR assay: An approach to study the neurosteroids biosynthetic pathway in humans. Journal of Neuroscience Methods, 2006, 153, 290-298.	2.5	7
58	Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurological Research, 2006, 28, 474-481.	1.3	78
59	Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14069-14074.	7.1	666
60	Alzheimer's disease—a sum greater than its parts?. Neurobiology of Aging, 2004, 25, 725-733.	3.1	27
61	The Induction of the TNFÂ Death Domain Signaling Pathway in Alzheimer's Disease Brain. Neurochemical Research, 2003, 28, 307-318.	3.3	117
62	Optimization of techniques for the maximal detection and quantification of Alzheimer's-related neuropathology with digital imaging. Neurobiology of Aging, 2002, 23, 161-170.	3.1	42
63	DNA damage and apoptosis in the aged canine brain: Relationship to AÎ ² deposition in the absence of neuritic pathology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2000, 24, 787-799.	4.8	16
64	Trophic Factors and Cell Adhesion Molecules Can Drive Dysfunctional Plasticity and Senile Plaque Formation in Alzheimer's Disease through a Breakdown in Spatial and Temporal Regulation. , 1999, , 529-XVI.		0
65	Plaque biogenesis in brain aging and Alzheimer's disease. II. Progressive transformation and developmental sequence of dystrophic neurites. Acta Neuropathologica, 1998, 96, 463-471.	7.7	59
66	Open Field Activity and Human Interaction as a Function of Age and Breed in Dogs. Physiology and Behavior, 1997, 62, 963-971.	2.1	46
67	Plaques and Tangles: Searching for Primary Events in a Forest of Data. Neurobiology of Aging, 1997, 18, 358-362.	3.1	20
68	The progression of β-amyloid deposition in the frontal cortex of the aged canine. Brain Research, 1997, 774, 35-43.	2.2	87
69	The canine as an animal model of human aging and dementia. Neurobiology of Aging, 1996, 17, 259-268.	3.1	247
70	Diffuse plaques contain C-terminal Aβ42 and not Aβ40: Evidence from cats and dogs. Neurobiology of Aging, 1996, 17, 653-659.	3.1	57
71	β-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiology of Aging, 1996, 17, 723-731	3.1	101
72	Localization and Cell Association of C1q in Alzheimer's Disease Brain. Experimental Neurology, 1996, 138, 22-32.	4.1	211

#	Article	IF	CITATIONS
73	β-Amyloid Accumulation Correlates with Cognitive Dysfunction in the Aged Canine. Neurobiology of Learning and Memory, 1996, 66, 11-23.	1.9	198
74	Î ² -amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiology of Aging, 1996, 17, 921-933.	3.1	297
75	Author's response to commentaries. Neurobiology of Aging, 1996, 17, 945-947.	3.1	3
76	Plaque biogenesis in brain aging and Alzheimer's disease. Brain Research, 1996, 739, 79-87.	2.2	69
77	Constructional apraxia in Alzheimer's disease correlates with neuritic neuropathology in occipital cortex. Brain Research, 1996, 741, 284-293.	2.2	41
78	Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer's disease brain increases with disease severity. Brain Research, 1995, 697, 35-43.	2.2	124
79	Early association of reactive astrocytes with senile plaques in Alzheimer's disease. Experimental Neurology, 1995, 132, 172-179.	4.1	162
80	Color image analysis in neuroanatomical research: Application to senile plaque subtype quantification in Alzheimer's disease. Neurobiology of Aging, 1995, 16, 211-223.	3.1	21
81	Image analysis of β-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet, The, 1995, 346, 1524-1528.	13.7	267
82	Analysis of brain injury following intrahippocampal administration of β-amyloid in streptozotocin-treated rats. Neurobiology of Aging, 1994, 15, 153-159.	3.1	22
83	Increased Immunoreactivity for Jun- and Fos-Related Proteins in Alzheimer's Disease: Association with Pathology. Experimental Neurology, 1994, 125, 286-295.	4.1	163
84	Subpopulations of dystrophic neuritis in Alzheimer's brain with distinct immunocytochemical and argentophilic characteristics. Brain Research, 1994, 637, 37-44.	2.2	17
85	β-Amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer's disease. Neuroscience, 1994, 63, 517-531.	2.3	144
86	Early phosphorylation of tau in Alzheimer's disease occurs at Ser-202 and is preferentially located within neurites. NeuroReport, 1994, 5, 2358-2362.	1.2	96
87	Immunohistochemical evidence for apoptosis in Alzheimer's disease. NeuroReport, 1994, 5, 2529-2533.	1.2	568
88	Identification and distribution of axonal dystrophic neurites in Alzheimer's disease. Brain Research, 1993, 625, 228-237.	2.2	69
89	Neuritic Involvement within bFGf Immunopositive Plaques of Alzheimer's Disease. Experimental Neurology, 1993, 124, 315-325.	4.1	70
90	β-Amyloid accumulation in aged canine brain: A model of early plaque formation in Alzheimer's disease. Neurobiology of Aging, 1993, 14, 547-560.	3.1	186

#	Article	IF	CITATIONS
91	Life Span Changes in the Verbal Categorization of Odors. Journal of Gerontology, 1993, 48, P49-P53.	1.9	21
92	β-Amyloid induces neuritic dystrophy in vitro. NeuroReport, 1992, 3, 769-772.	1.2	132
93	Localization of heparan sulfate glycosaminoglycan and proteoglycan core protein in aged brain and Alzheimer's disease. Neuroscience, 1992, 51, 801-813.	2.3	166
94	Aggregation of the amyloid precursor protein within degenerating neurons and dystrophic neurites in alzheimer's disease. Neuroscience, 1992, 48, 763-777.	2.3	113
95	Gliotoxic actions of excitatory amino acids. Neuropharmacology, 1992, 31, 899-907.	4.1	46
96	bFGF promotes the survival of entorhinal layer II neurons after perforant path axotomy. Brain Research, 1992, 591, 271-276.	2.2	48
97	Induction of basic Fibroblast Growth Factor in Alzheimer's disease pathology. NeuroReport, 1990, 1, 211-214.	1.2	107
98	An object relational approach to biomedical database. , 0, , .		1