Seyed Reza Shadizadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel, 2013, 104, 462-467.	3.4	150
2	Adsorption of Novel Nonionic Surfactant and Particles Mixture in Carbonates: Enhanced Oil Recovery Implication. Energy & Fuels, 2012, 26, 4655-4663.	2.5	148
3	Implementation of a high-performance surfactant for enhanced oil recovery from carbonate reservoirs. Journal of Petroleum Science and Engineering, 2013, 110, 66-73.	2.1	142
4	Induced effect of adding nano silica on adsorption of a natural surfactant onto sandstone rock: Experimental and theoretical study. Journal of Petroleum Science and Engineering, 2013, 112, 239-247.	2.1	140
5	Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: Static and dynamic conditions. Fuel, 2015, 159, 15-26.	3.4	139
6	New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept. Fuel, 2012, 102, 716-723.	3.4	134
7	Wettability Alteration in Carbonate Rocks by Implementing New Derived Natural Surfactant: Enhanced Oil Recovery Applications. Transport in Porous Media, 2015, 106, 645-667.	1.2	115
8	A novel nonionic surfactant for inhibiting shale hydration. Applied Clay Science, 2015, 118, 74-86.	2.6	114
9	Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application. Fuel, 2014, 117, 749-755.	3.4	113
10	A rigorous model to predict the amount of Dissolved Calcium Carbonate Concentration throughout oil field brines: Side effect of pressure and temperature. Fuel, 2015, 139, 154-159.	3.4	88
11	Effect of nano silica particles on Interfacial Tension (IFT) and mobility control of natural surfactant (Cedr Extraction) solution in enhanced oil recovery process by nano - surfactant flooding. Journal of Molecular Liquids, 2017, 248, 163-167.	2.3	78
12	Applicability Test of New Surfactant Produced from Zizyphus Spina-Christi Leaves for Enhanced Oil Recovery in Carbonate Reservoirs. Journal of the Japan Petroleum Institute, 2012, 55, 27-32.	0.4	69
13	Connectionist model for predicting minimum gas miscibility pressure: Application to gas injection process. Fuel, 2015, 148, 202-211.	3.4	65
14	Spotlight on the New Natural Surfactant Flooding in Carbonate Rock Samples in Low Salinity Condition. Scientific Reports, 2018, 8, 10985.	1.6	65
15	Implications of anionic and natural surfactants to measure wettability alteration in EOR processes. Fuel, 2020, 278, 118392.	3.4	63
16	Effects of synthesized nanoparticles and Henna-Tragacanth solutions on oil/water interfacial tension: Nanofluids stability considerations. Petroleum, 2020, 6, 293-303.	1.3	56
17	Nano-surfactant flooding in carbonate reservoirs: A mechanistic study. European Physical Journal Plus, 2017, 132, 1.	1.2	45
18	Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement. Petroleum. 2015, 1, 289-299.	1.3	42

Seyed Reza Shadizadeh

#	Article	IF	CITATIONS
19	Effect of using Zyziphus Spina Christi or Cedr Extract (CE) as a natural surfactant on oil mobility control by foam flooding. Journal of Molecular Liquids, 2019, 293, 111573.	2.3	36
20	A natural dye in water-based drilling fluids: Swelling inhibitive characteristic and side effects. Petroleum, 2017, 3, 355-366.	1.3	35
21	An accurate model to predict drilling fluid density at wellbore conditions. Egyptian Journal of Petroleum, 2018, 27, 1-10.	1.2	34
22	Removal of cadmium from drilling fluid using nano-adsorbent. Fuel, 2013, 111, 505-509.	3.4	32
23	Transient thermo-poroelastic finite element analysis of borehole breakouts. International Journal of Rock Mechanics and Minings Sciences, 2014, 71, 418-428.	2.6	29
24	Toward connectionist model for predicting bubble point pressure of crude oils: Application of artificial intelligence. Petroleum, 2015, 1, 307-317.	1.3	29
25	Experimental study of the relationship between porosity and surface area of carbonate reservoirÂrocks. Journal of Petroleum Exploration and Production, 2020, 10, 1817-1834.	1.2	29
26	Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir. Journal of Applied Geophysics, 2013, 89, 96-107.	0.9	28
27	Colloidal gas aphron drilling fluid properties generated by natural surfactants: Experimental investigation. Journal of Natural Gas Science and Engineering, 2015, 27, 1109-1117.	2.1	28
28	Numerical modeling and simulation of drilling cutting transport in horizontal wells. Journal of Petroleum Exploration and Production, 2018, 8, 455-474.	1.2	28
29	Geological storage of carbon dioxide by injection of carbonated water in an Iranian oil reservoir: A case study. Journal of Petroleum Science and Engineering, 2013, 111, 170-177.	2.1	27
30	Reservoir rock permeability prediction using support vector regression in an Iranian oil field. Journal of Geophysics and Engineering, 2012, 9, 336-344.	0.7	24
31	Nanofluid in Hydrophilic State for EOR Implication Through Carbonate Reservoir. Journal of Dispersion Science and Technology, 2014, 35, 1537-1542.	1.3	24
32	Evaluation of a new green synthesized surfactant from linseeds - chemical EOR implications from sandstone petroleum reservoirs. Journal of Molecular Liquids, 2021, 342, 117263.	2.3	24
33	A dynamic method for experimental assessment of scale inhibitor efficiency in oil recovery process by water flooding. Petroleum, 2019, 5, 303-314.	1.3	22
34	Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells. Petroleum, 2016, 2, 258-266.	1.3	21
35	An investigation into surfactant flooding and alkaline-surfactant-polymer flooding for enhancing oil recovery from carbonate reservoirs: Experimental study and simulation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2974-2985.	1.2	20
36	A transient fully coupled thermo-poroelastic finite element analysis of wellbore stability. Arabian Journal of Geosciences, 2015, 8, 3855-3865.	0.6	19

#	Article	IF	CITATIONS
37	Simultaneous evaluation of capillary pressure and wettability alteration based on the USBM and imbibition tests on carbonate minerals. Journal of Petroleum Science and Engineering, 2021, 200, 108285.	2.1	19
38	Prediction of compressional wave velocity by an artificial neural network using some conventional well logs in a carbonate reservoir. Journal of Geophysics and Engineering, 2013, 10, .	0.7	18
39	Experimental investigation of CO2 huff and puff in a matrix-fracture system. Fuel, 2015, 158, 105-112.	3.4	18
40	Development of a Fuzzy System Model for Candidate-well Selection for Hydraulic Fracturing in a Carbonate Reservoir. , 2012, , .		16
41	Thermodynamic analysis of adsorption of a naturally derived surfactant onto shale sandstone reservoirs. European Physical Journal Plus, 2018, 133, 1.	1.2	16
42	Fuzzy consequence modeling of blowouts in Iranian drilling operations; HSE consideration. Safety Science, 2015, 77, 152-159.	2.6	15
43	Mechanistic understanding of chemical flooding in swelling porous media using a bio-based nonionic surfactant. Journal of Molecular Liquids, 2017, 229, 76-88.	2.3	15
44	Synergistic Efficiency of Zinc Oxide/Montmorillonite Nanocomposites and a New Derived Saponin in Liquid/Liquid/Solid Interface-Included Systems: Application in Nanotechnology-Assisted Enhanced Oil Recovery. ACS Omega, 2022, 7, 24951-24972.	1.6	15
45	Experimental assessment of hybrid smart carbonated water flooding for carbonate reservoirs. Petroleum, 2021, 7, 80-90.	1.3	13
46	State-of-the-art drilling fluid made of produced formation water for prevention of clay swelling: Experimental Investigation. Chemical Engineering Research and Design, 2021, 170, 350-365.	2.7	12
47	Adsorption of a nonionic surfactant onto a silica surface. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1455-1460.	1.2	11
48	Effect of the wettability alteration on the cementation factor of carbonate rocks using Henna extract. Materialia, 2019, 8, 100440.	1.3	11
49	Static adsorption of a new cationic biosurfactant on carbonate minerals: Application to EOR. Petroleum Science and Technology, 2020, 38, 462-471.	0.7	8
50	Experimental Investigation of Side Effect of Henna Extract as a New and Ecofriendly Corrosion Inhibitor on Acid Injectivity of Calcareous Sandstone. Transport in Porous Media, 2013, 97, 105-118.	1.2	7
51	Kinetic modeling of cement slurry synthesized with Henna extract in oil well acidizing treatments. Petroleum, 2016, 2, 196-207.	1.3	7
52	Experimental investigation on new derived natural surfactant: wettability alteration, IFT reduction, and core flooding in oil wet carbonate reservoir. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 4282-4292.	1.2	7
53	Health, Safety, and Environmental Challenges of Xylene in Upstream Petroleum Industry. Energy and Environment, 2012, 23, 1339-1352.	2.7	6
54	Immiscible Displacement of a Wetting Fluid by a Non-wetting One at High Capillary Number in a Micro-model Containing a Single Fracture. Transport in Porous Media, 2012, 94, 289-301.	1.2	6

#	Article	IF	CITATIONS
55	An Investigation of Hydrogen Sulfide Plume Migration in the Asmari Reservoir of the Iranian Marun Oil Field: Using Repeat Formation Tests. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2013, 35, 1991-2001.	1.2	5
56	Reservoir rock wettability alteration using different types of surfactants: Experimental assessment. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, , 1-7.	1.2	4
57	Determination of pore size distribution profile along wellbore: using repeat formation tester. Journal of Petroleum Exploration and Production, 2017, 7, 621-626.	1.2	4
58	Development of drilling trip time model for southern Iranian oil fields: using artificial neural networks and multiple linear regression approaches. Journal of Petroleum Exploration and Production, 2013, 3, 287-295.	1.2	3
59	Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field. Applied Radiation and Isotopes, 2017, 130, 172-187.	0.7	3
60	Spotlight on the use of new natural surfactants in colloidal gas aphron (CGA) fluids: A mechanistic study. European Physical Journal Plus, 2017, 132, 1.	1.2	3
61	Transient thermo-poroelastic analysis of drilling-induced mechanical damage in nonfractured rocks. Arabian Journal of Geosciences, 2015, 8, 10803-10818.	0.6	1
62	Coupled thermo-poroelastic analysis of drilling induced mechanical damage in fractured rocks. Journal of Petroleum Science and Engineering, 2016, 146, 601-616.	2.1	1
63	Carbonate and sandstone rocks dissolution investigation during injection of smart carbonated water. International Journal of Oil, Gas and Coal Technology, 2021, 26, 382.	0.1	1
64	Experimental evaluation of henna extract as a corrosion inhibitor additive in sandstone acidizing and its side effect on rock/fluid system. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	1.2	0
65	The Acidic Foamed Cement Formulation with Particular Characteristics for Oil and Gas Wells Cementing Jobs: An Experimental Approach, Advances in Cement Research, O. , 1-33.	0.7	0