Meng How Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Sensitive and Specific Fluorescent RT-LAMP Assay for SARS-CoV-2 Detection in Clinical Samples. ACS Synthetic Biology, 2022, 11, 448-463.	1.9	17
2	Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nature Methods, 2022, 19, 833-844.	9.0	35
3	RNA Editing in Human and Mouse Tissues. Methods in Molecular Biology, 2021, 2181, 163-176.	0.4	1
4	Determination of isoform-specific RNA structure with nanopore long reads. Nature Biotechnology, 2021, 39, 336-346.	9.4	72
5	An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. Nature Communications, 2021, 12, 1739.	5.8	124
6	An Expanded Synthetic Biology Toolkit for Gene Expression Control inAcetobacteraceae. ACS Synthetic Biology, 2019, 8, 708-723.	1.9	45
7	Genome Editing in Mammalian Cell Lines using CRISPR-Cas. Journal of Visualized Experiments, 2019, , .	0.2	3
8	A human expression system based on HEK293 for the stable production of recombinant erythropoietin. Scientific Reports, 2019, 9, 16768.	1.6	35
9	Quantification of bacterial fluorescence using independent calibrants. PLoS ONE, 2018, 13, e0199432.	1.1	66
10	Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biology, 2018, 19, 62.	3.8	66
11	SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates. Nucleic Acids Research, 2018, 46, 7379-7395.	6.5	22
12	Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems. Methods in Molecular Biology, 2018, 1772, 267-288.	0.4	2
13	Deficiency of microRNA <i>miR-34a</i> expands cell fate potential in pluripotent stem cells. Science, 2017, 355, .	6.0	129
14	Dynamic landscape and regulation of RNA editing in mammals. Nature, 2017, 550, 249-254.	13.7	495
15	Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. Bioresource Technology, 2017, 245, 1343-1351.	4.8	36
16	Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. BioTechniques, 2017, 62, .	0.8	1
17	A chemical-inducible CRISPR–Cas9 system for rapid control of genome editing. Nature Chemical Biology, 2016, 12, 980-987.	3.9	176
18	The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans. PLoS Medicine, 2015, 12, e1001782.	3.9	23

Meng How Tan

#	Article	IF	CITATIONS
19	Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues. PLoS Genetics, 2014, 10, e1004304.	1.5	60
20	Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. BioTechniques, 2014, 57, 115-124.	0.8	144
21	RNA sequencing reveals a diverse and dynamic repertoire of the <i>Xenopus tropicalis</i> transcriptome over development. Genome Research, 2013, 23, 201-216.	2.4	128
22	An Oct4â€Sall4â€Nanog network controls developmental progression in the preâ€implantation mouse embryo. Molecular Systems Biology, 2013, 9, 632.	3.2	60
23	Comment on "Widespread RNA and DNA Sequence Differences in the Human Transcriptome― Science, 2012, 335, 1302-1302.	6.0	155
24	Response to Comments on "Widespread RNA and DNA Sequence Differences in the Human Transcriptome― Science, 2012, 335, 1302-1302.	6.0	98
25	Accurate identification of human Alu and non-Alu RNA editing sites. Nature Methods, 2012, 9, 579-581.	9.0	357
26	An essential transcription factor, SciP, enhances robustness of <i>Caulobacter</i> cell cycle regulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18985-18990.	3.3	68
27	Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo. Developmental Biology, 2010, 344, 66-78.	0.9	77
28	High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nature Biotechnology, 2007, 25, 584-592.	9.4	145
29	Experimental Verification of the Mach Number Field in a Supersonic Ludwieg Tube. AIAA Journal, 2004, 42, 1721-1724.	1.5	7
30	Steady motions of an axisymmetric satellite: an atlas of their bifurcations. International Journal of Non-Linear Mechanics, 2004, 39, 921-940.	1.4	6