Aaron G Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917475/publications.pdf Version: 2024-02-01

AARON C SCHMIDT

#	Article	IF	CITATIONS
1	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	13.5	1,956
2	Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021, 184, 2372-2383.e9.	13.5	1,166
3	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	6.0	978
4	SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 2020, 183, 1043-1057.e15.	13.5	860
5	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	6.0	789
6	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	13.7	765
7	Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell, 2020, 183, 143-157.e13.	13.5	599
8	COVID-19-neutralizing antibodies predict disease severity and survival. Cell, 2021, 184, 476-488.e11.	13.5	586
9	Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Science Immunology, 2020, 5, .	5.6	561
10	Distinct Early Serological Signatures Track with SARS-CoV-2 Survival. Immunity, 2020, 53, 524-532.e4.	6.6	334
11	Assessment of Maternal and Neonatal SARS-CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies During the COVID-19 Pandemic. JAMA Network Open, 2020, 3, e2030455.	2.8	315
12	Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women. JAMA - Journal of the American Medical Association, 2021, 325, 2370.	3.8	307
13	Complex Antigens Drive Permissive Clonal Selection in Germinal Centers. Immunity, 2016, 44, 542-552.	6.6	278
14	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	15.2	275
15	Compromised Humoral Functional Evolution Tracks with SARS-CoV-2 Mortality. Cell, 2020, 183, 1508-1519.e12.	13.5	263
16	Escape and Compensation from Early HLA-B57-Mediated Cytotoxic T-Lymphocyte Pressure on Human Immunodeficiency Virus Type 1 Gag Alter Capsid Interactions with Cyclophilin A. Journal of Virology, 2007, 81, 12608-12618.	1.5	241
17	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
18	Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 264-269.	3.3	227

AARON G SCHMIDT

#	Article	IF	CITATIONS
19	Quick COVID-19 Healers Sustain Anti-SARS-CoV-2 Antibody Production. Cell, 2020, 183, 1496-1507.e16.	13.5	182
20	CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Central Science, 2021, 7, 1156-1165.	5.3	165
21	Viral Receptor-Binding Site Antibodies with Diverse Germline Origins. Cell, 2015, 161, 1026-1034.	13.5	151
22	Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism. Cell, 2019, 177, 1124-1135.e16.	13.5	141
23	Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope. Cell Host and Microbe, 2019, 25, 827-835.e6.	5.1	127
24	Memory B Cells that Cross-React with Group 1 and Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires. Immunity, 2018, 48, 174-184.e9.	6.6	124
25	Clinical sensitivity and interpretation of PCR and serological COVIDâ€19 diagnostics for patients presenting to the hospital. FASEB Journal, 2020, 34, 13877-13884.	0.2	117
26	Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate. PLoS Pathogens, 2010, 6, e1000851.	2.1	113
27	Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 168-173.	3.3	113
28	Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. Nature Biomedical Engineering, 2020, 4, 1180-1187.	11.6	110
29	Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nature Biotechnology, 2018, 36, 152-155.	9.4	109
30	Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nature Medicine, 2016, 22, 1465-1469.	15.2	104
31	Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell, 2021, 184, 4969-4980.e15.	13.5	94
32	Peptide Inhibitors of Flavivirus Entry Derived from the E Protein Stem. Journal of Virology, 2010, 84, 12549-12554.	1.5	85
33	Small-Molecule Inhibitors of Dengue-Virus Entry. PLoS Pathogens, 2012, 8, e1002627.	2.1	80
34	Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	75
35	Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10275-10280.	3.3	73
36	Sequential conformational rearrangements in flavivirus membrane fusion. ELife, 2014, 3, e04389.	2.8	72

AARON G SCHMIDT

#	Article	IF	CITATIONS
37	High Seroprevalence of Anti-SARS-CoV-2 Antibodies in Chelsea, Massachusetts. Journal of Infectious Diseases, 2020, 222, 1955-1959.	1.9	72
38	Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. Cell Reports, 2015, 13, 2842-2850.	2.9	67
39	Early cross-coronavirus reactive signatures of humoral immunity against COVID-19. Science Immunology, 2021, 6, eabj2901.	5.6	67
40	Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nature Chemical Biology, 2021, 17, 1057-1064.	3.9	59
41	GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein. Cell Chemical Biology, 2016, 23, 443-452.	2.5	57
42	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	5.8	57
43	An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host and Microbe, 2021, 29, 1437-1453.e8.	5.1	53
44	Autoreactivity profilesÂof influenza hemagglutinin broadly neutralizingÂantibodies. Scientific Reports, 2019, 9, 3492.	1.6	49
45	Key mutations stabilize antigenâ€binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins: Structure, Function and Bioinformatics, 2015, 83, 771-780.	1.5	34
46	Naive human B cells engage the receptor binding domain of SARS-CoV-2, variants of concern, and related sarbecoviruses. Science Immunology, 2021, 6, eabl5842.	5.6	33
47	Self-tolerance curtails the B cell repertoire to microbial epitopes. JCI Insight, 2019, 4, .	2.3	32
48	Gain-of-Sensitivity Mutations in a Trim5-Resistant Primary Isolate of Pathogenic SIV Identify Two Independent Conserved Determinants of Trim51± Specificity. PLoS Pathogens, 2013, 9, e1003352.	2.1	26
49	Protein engineering strategies for rational immunogen design. Npj Vaccines, 2021, 6, 154.	2.9	26
50	Coronavirus-Specific Antibody Cross Reactivity in Rhesus Macaques following SARS-CoV-2 Vaccination and Infection. Journal of Virology, 2021, 95, .	1.5	24
51	CryoEM Structure of an Influenza Virus Receptor-Binding Site Antibody–Antigen Interface. Journal of Molecular Biology, 2017, 429, 1829-1839.	2.0	21
52	Structure-Guided Molecular Grafting of a Complex Broadly Neutralizing Viral Epitope. ACS Infectious Diseases, 2020, 6, 1182-1191.	1.8	18
53	Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell Reports, 2022, 38, 110561.	2.9	16
54	Altering the Immunogenicity of Hemagglutinin Immunogens by Hyperglycosylation and Disulfide Stabilization. Frontiers in Immunology, 2021, 12, 737973.	2.2	11

AARON G SCHMIDT

#	Article	IF	CITATIONS
55	COVID-19 Neutralizing Antibodies Predict Disease Severity and Survival. SSRN Electronic Journal, 0, , .	0.4	9
56	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	5.8	4
57	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathogens, 2020, 16, e1008577.	2.1	3
58	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
59	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
60	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
61	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0