Philipp A Brandl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/891736/publications.pdf Version: 2024-02-01

Ομιιίοο Δ Βρλνιοι

#	Article	IF	CITATIONS
1	Effects of the Hydrous Domain in the Mantle Wedge on Magma Formation and Mixing at the Northeast Lau Spreading Center, SW Pacific. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
2	Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development. Nature Communications, 2021, 12, 1723.	12.8	23
3	Intra-oceanic submarine arc evolution recorded in an ~1-km-thick rear-arc succession of distal volcaniclastic lobe deposits. , 2021, 17, 957-980.		7
4	The 6–8 Aug 2019 eruption of †Volcano F' in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research, 2020, 390, 106695.	2.1	18
5	Sedimentary and volcanic record of the nascent Izu-Bonin-Mariana arc from IODP Site U1438. Bulletin of the Geological Society of America, 2020, , .	3.3	11
6	Crustal Structure of the Niuafo'ou Microplate and Fonualei Rift and Spreading Center in the Northeastern Lau Basin, Southwestern Pacific. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019184.	3.4	4
7	Shallow Seismicity and the Classification of Structures in the Lau Backâ€Arc Basin. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008924.	2.5	16
8	Temporal Evolution of Proto-Izu–Bonin–Mariana Arc Volcanism over 10 Myr: Constraints from Statistical Analysis of Melt Inclusion Compositions. Journal of Petrology, 2020, 61, .	2.8	10
9	The submarine tectono-magmatic framework of Cu-Au endowment in the Tabar-to-Feni island chain, PNG. Ore Geology Reviews, 2020, 121, 103491.	2.7	8
10	Melting and Mantle Sources in the Azores. Active Volcanoes of the World, 2018, , 251-280.	1.4	8
11	Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 2018, 481, 80-90.	4.4	131
12	Iron isotope variability in ocean floor lavas and mantle sources in the Lau back-arc basin. Geochimica Et Cosmochimica Acta, 2018, 241, 150-163.	3.9	23
13	Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu). Lithos, 2018, 312-313, 290-307.	1.4	15
14	The arc arises: The links between volcanic output, arc evolution and melt composition. Earth and Planetary Science Letters, 2017, 461, 73-84.	4.4	57
15	Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	47
16	Magmatic Evolution and Source Variations at the Nifonea Ridge (New Hebrides Island Arc). Journal of Petrology, 2017, 58, 473-494.	2.8	12
17	Reply to 'Unclear causes for subduction'. Nature Geoscience, 2016, 9, 338-339.	12.9	7
18	Compositional variation and ²²⁶ Raâ€ ²³⁰ Th model ages of axial lavas from the southern Midâ€Atlantic Ridge, 8Ű48′S. Geochemistry, Geophysics, Geosystems, 2016, 17, 199-218.	2.5	3

PHILIPP A BRANDL

#	Article	IF	CITATIONS
19	The timescales of magma evolution at mid-ocean ridges. Lithos, 2016, 240-243, 49-68.	1.4	15
20	Formation of andesite melts and Caâ€rich plagioclase in the submarine Monowai volcanic system, Kermadec arc. Geochemistry, Geophysics, Geosystems, 2015, 16, 4130-4152.	2.5	14
21	Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochimica Et Cosmochimica Acta, 2015, 166, 29-52.	3.9	65
22	Magmatic Evidence for Carbonate Metasomatism in the Lithospheric Mantle underneath the Ohře (Eger) Rift. Journal of Petrology, 2015, 56, 1743-1774.	2.8	33
23	A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc. Nature Geoscience, 2015, 8, 728-733.	12.9	194
24	Geochemistry of volcanic glasses from the Louisville Seamount Trail (IODP Expedition 330): Implications for eruption environments and mantle melting. Geochemistry, Geophysics, Geosystems, 2014, 15, 1718-1738.	2.5	18
25	Formation of the Troodos Ophiolite at a triple junction: Evidence from trace elements in volcanic glass. Chemical Geology, 2014, 386, 66-79.	3.3	50
26	Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contributions To Mineralogy and Petrology, 2013, 165, 823-841.	3.1	42
27	High mantle temperatures following rifting caused by continental insulation. Nature Geoscience, 2013, 6, 391-394.	12.9	56
28	Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine. Geology, 2013, 41, 491-494.	4.4	53
29	Conodont biostratigraphy in the Early to Middle Ordovician strata of the Oslobreen Group in Ny Friesland, Svalbard. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2013, 164, 149-172.	0.4	15
30	Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 2012, 298-299, 41-56.	3.3	48
31	Insights into mantle composition and mantle melting beneath midâ€ocean ridges from postspreading volcanism on the fossil Galapagos Rise. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	32
32	Expedition 376 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	9
33	Expedition 376 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	15
34	Site U1528. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	7
35	Site U1530. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
36	Site U1529. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	3

3

#	Article	IF	CITATIONS
37	Site U1527. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
38	Site U1531. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	1