List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917267/publications.pdf Version: 2024-02-01

ALBA THES

#	Article	IF	CITATIONS
1	Stepwise strategy based on 1H-NMR fingerprinting in combination with chemometrics to determine the content of vegetable oils in olive oil mixtures. Food Chemistry, 2022, 366, 130588.	4.2	14
2	Geographical authentication of virgin olive oil by GC–MS sesquiterpene hydrocarbon fingerprint: Verifying EU and single country label-declaration. Food Chemistry, 2022, 378, 132104.	4.2	14
3	Geographical authentication of virgin olive oil by GC-MS sesquiterpene hydrocarbon fingerprint: Scaling down to the verification of PDO compliance. Food Control, 2022, 139, 109055.	2.8	5
4	Effect of freezing, fast-freezing by liquid nitrogen or refrigeration to preserve premium extra virgin olive oil during storage. European Food Research and Technology, 2022, 248, 2651-2663.	1.6	5
5	Using fluorescence excitation-emission matrices to predict bitterness and pungency of virgin olive oil: A feasibility study. Food Chemistry, 2022, 395, 133602.	4.2	7
6	Composition and Nutritional Value of Acid Oils and Fatty Acid Distillates Used in Animal Feeding. Animals, 2021, 11, 196.	1.0	19
7	Methods to determine the quality of acid oils and fatty acid distillates used in animal feeding. MethodsX, 2021, 8, 101334.	0.7	15
8	Soybean Oil Replacement by Palm Fatty Acid Distillate in Broiler Chicken Diets: Fat Digestibility and Lipid-Class Content along the Intestinal Tract. Animals, 2021, 11, 1035.	1.0	8
9	Large-scale evaluation of shotgun triacylglycerol profiling for the fast detection of olive oil adulteration. Food Control, 2021, 123, 107851.	2.8	12
10	Peer inter-laboratory validation study of a harmonized SPME-GC-FID method for the analysis of selected volatile compounds in virgin olive oils. Food Control, 2021, 123, 107823.	2.8	21
11	Acid versus crude oils for broiler chicken diets: In vitro lipid digestion and bioaccessibility. Animal Feed Science and Technology, 2021, 276, 114926.	1.1	8
12	Oxidative Quality of Acid Oils and Fatty Acid Distillates Used in Animal Feeding. Animals, 2021, 11, 2559.	1.0	7
13	Effects of free-fatty-acid content and saturation degree of the dietary oil sources on lipid-class content and fatty-acid digestibility along the gastrointestinal tract in broilers from 22 to 37 days of age. Poultry Science, 2021, 100, 101261.	1.5	8
14	Varietal authentication of virgin olive oil: Proving the efficiency of sesquiterpene fingerprinting for Mediterranean Arbequina oils. Food Control, 2021, 128, 108200.	2.8	14
15	Profiling versus fingerprinting analysis of sesquiterpene hydrocarbons for the geographical authentication of extra virgin olive oils. Food Chemistry, 2020, 307, 125556.	4.2	38
16	Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT - Food Science and Technology, 2020, 121, 108936.	2.5	42
17	Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics. Foods, 2020, 9, 1509.	1.9	21
18	Determination and Comparison of the Lipid Profile and Sodium Content of Gluten-Free and Gluten-Containing Breads from the Spanish Market. Plant Foods for Human Nutrition, 2020, 75, 344-354.	1.4	13

#	Article	IF	CITATIONS
19	Lactobacillus fermentum CECT5716 Supplementation in Rats during Pregnancy and Lactation Impacts Maternal and Offspring Lipid Profile, Immune System and Microbiota. Cells, 2020, 9, 575.	1.8	27
20	Chemical Markers to Distinguish the Homo- and Heterozygous Bitter Genotype in Sweet Almond Kernels. Foods, 2020, 9, 747.	1.9	7
21	Associations of Breast Milk Microbiota, Immune Factors, and Fatty Acids in the Rat Mother–Offspring Pair. Nutrients, 2020, 12, 319.	1.7	14
22	Lactobacillus fermentum CECT5716 supplementation in rats during pregnancy and lactation affects mammary milk composition. Journal of Dairy Science, 2020, 103, 2982-2992.	1.4	19
23	Effects of dietary free fatty-acid content and saturation degree on lipid-class composition and fatty-acid digestibility along the gastrointestinal tract in broiler starter chickens. Poultry Science, 2019, 98, 4929-4941.	1.5	18
24	Catalan Virgin Olive Oil Protected Designations of Origin: Physicochemical and Major Sensory Attributes. European Journal of Lipid Science and Technology, 2019, 121, 1800130.	1.0	8
25	Evolution of lipid classes and fatty acid digestibility along the gastrointestinal tract of broiler chickens fed different fat sources at different ages. Poultry Science, 2019, 98, 1341-1353.	1.5	32
26	The different molecular structure and glycerol-to-fatty acid ratio of palm oils affect their nutritive value in broiler chicken diets. Animal, 2018, 12, 2040-2048.	1.3	13
27	Fatty acid digestibility in gilthead sea bream fed diets containing native, re-esterified or acid vegetable oils. Aquaculture Nutrition, 2017, 23, 537-547.	1.1	5
28	Quality characteristics of fillets of rainbow trout fed acid or re-esterified rapeseed oils as dietary fat sources. Aquaculture, 2017, 480, 22-31.	1.7	9
29	Effects of intensive and alternative production systems on the technological and quality parameters of rapeseed seed (<i>Brassica napus</i> L. â€~Siska'). Journal of the Science of Food and Agriculture, 2017, 97, 2647-2656.	1.7	4
30	Co-spray-drying of a heme iron ingredient to decrease its pro-oxidant effect in lipid-containing foods. European Journal of Lipid Science and Technology, 2016, 118, 195-207.	1.0	4
31	Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate. Food Chemistry, 2016, 196, 567-576.	4.2	16
32	Authentication of Iberian dry-cured ham: New approaches by polymorphic fingerprint and ultrahigh resolution mass spectrometry. Food Control, 2016, 60, 370-377.	2.8	20
33	Acid and re-esterified rapeseed oils as alternative vegetable oils for rainbow trout diets: Effects on lipid digestibility and growth. Aquaculture, 2016, 451, 186-194.	1.7	11
34	Use of re-esterified palm oils, differing in their acylglycerol structure, in fattening pig diets. Animal, 2015, 9, 1662-1671.	1.3	3
35	Use of re-esterified palm oils, differing in their acylglycerol structure, in weaning-piglet diets. Animal, 2015, 9, 1304-1311.	1.3	5
36	Re-esterified oils from palm acid oil do not alter pork fatty acid composition. European Journal of Lipid Science and Technology, 2015, 117, 1406-1416.	1.0	0

#	Article	IF	CITATIONS
37	Vegetable re-esterified oils in diets for rainbow trout: Effects on fatty acid digestibility. Aquaculture, 2015, 444, 28-35.	1.7	9
38	Discrimination of Pulp Oil and Kernel Oil from Pequi (<i>Caryocar brasiliense</i>) by Fatty Acid Methyl Esters Fingerprinting, Using GC-FID and Multivariate Analysis. Journal of Agricultural and Food Chemistry, 2015, 63, 10064-10069.	2.4	21
39	The effect of citric acid and ascorbyl palmitate in palm oil enriched with heme iron: A model for iron fortification in bakery products. European Journal of Lipid Science and Technology, 2014, 116, 300-310.	1.0	9
40	Spanish cheese screening and selection of lactic acid bacteria withÂhigh gamma-aminobutyric acid production. LWT - Food Science and Technology, 2014, 56, 351-355.	2.5	44
41	Impact of the oxidative quality of fish oils in feeds on the composition and oxidative stability of chicken and rabbit meat. Animal Feed Science and Technology, 2014, 196, 76-87.	1.1	15
42	Reâ€esterified Palm Oils, Compared to Native Palm Oil, do not Alter Fat Absorption, Postprandial Lipemia or Growth Performance in Broiler Chicks. Lipids, 2014, 49, 795-805.	0.7	14
43	Phytanic and pristanic acid content in Dutch farm milk and implications for the verification of the farming management system. International Dairy Journal, 2014, 35, 21-24.	1.5	13
44	Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling. LWT - Food Science and Technology, 2014, 59, 215-221.	2.5	21
45	Authentication of geographical origin of palm oil by chromatographic fingerprinting of triacylglycerols and partial least square-discriminant analysis. Talanta, 2013, 116, 788-793.	2.9	36
46	Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques. Food Chemistry, 2013, 137, 142-150.	4.2	39
47	Vegetable Oils. Comprehensive Analytical Chemistry, 2013, 60, 543-572.	0.7	3
48	Use of recovered frying oils in chicken and rabbit feeds: effect on the fatty acid and tocol composition and on the oxidation levels of meat, liver and plasma. Animal, 2013, 7, 505-517.	1.3	19
49	Use of palm-oil by-products in chicken and rabbit feeds: effect on the fatty acid and tocol composition of meat, liver and plasma. Animal, 2012, 6, 1005-1017.	1.3	11
50	Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control, 2012, 27, 254-267.	2.8	54
51	Authentication of Organic Feed by Near-Infrared Spectroscopy Combined with Chemometrics: A Feasibility Study. Journal of Agricultural and Food Chemistry, 2012, 60, 8129-8133.	2.4	33
52	Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification. Food Chemistry, 2012, 134, 589-596.	4.2	44
53	Verification of Organic Feed Identity by Fatty Acid Fingerprinting. Journal of Agricultural and Food Chemistry, 2011, 59, 8816-8821.	2.4	25
54	Fingerprinting of fatty acid composition for the verification of the identity of organic eggs. Lipid Technology, 2011, 23, 40-42.	0.3	19

#	Article	IF	CITATIONS
55	Oxidized oils and dietary zinc and α-tocopheryl acetate supplementation: effects on rabbit plasma, liver and meat fatty acid composition and meat Zn, Cu, Fe and Se content. Animal, 2010, 4, 1929-1939.	1.3	9
56	Effect of Feed Fat Byâ€Products with Trans Fatty Acids and Heated Oil on Cholesterol and Oxycholesterols in Chicken. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 173-184.	0.8	7
57	Effectiveness of antioxidants in preventing oxidation of palm oil enriched with heme iron: A model for iron fortification in baked products. European Journal of Lipid Science and Technology, 2010, 112, 761-769.	1.0	12
58	Effects of different levels of trans fatty acids and oxidised lipids in diet on cholesterol and cholesterol oxidation products formation in rabbit. Food Chemistry, 2010, 121, 1198-1202.	4.2	7
59	Moderately Oxidized Oils and Dietary Zinc and α-Tocopheryl Acetate Supplementation: Effects on the Oxidative Stability of Rabbit Plasma, Liver, and Meat. Journal of Agricultural and Food Chemistry, 2010, 58, 9112-9119.	2.4	10
60	Assessing rabbit and chicken tissue susceptibility to oxidation through the ferrous oxidationâ€xylenol orange method. European Journal of Lipid Science and Technology, 2009, 111, 563-573.	1.0	14
61	Dietary Strategies to Improve Nutritional Value, Oxidative Stability, and Sensory Properties of Poultry Products. Critical Reviews in Food Science and Nutrition, 2009, 49, 800-822.	5.4	92
62	Effect of Tocopherol Extract,Staphylococcus carnosusCulture, and Celery Concentrate Addition on Quality Parameters of Organic and Conventional Dry-Cured Sausages. Journal of Agricultural and Food Chemistry, 2009, 57, 8963-8972.	2.4	17
63	Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE-deficient mice: potential involvement of oxysterols. American Journal of Physiology - Renal Physiology, 2009, 296, G553-G562.	1.6	66
64	Dietary n-6- or n-3-rich vegetable fats and α-tocopheryl acetate: effects on fatty acid composition and stability of rabbit plasma, liver and meat. Animal, 2009, 3, 1408-1419.	1.3	27
65	Determination of hydroperoxides in foods and biological samples by the ferrous oxidation–xylenol orange method: A review of the factors that influence the method's performance. Analytical Biochemistry, 2008, 377, 1-15.	1.1	179
66	Influence of Different Dietary Doses of n-3- or n-6-Rich Vegetable Fats and α-Tocopheryl Acetate Supplementation on Raw and Cooked Rabbit Meat Composition and Oxidative Stability. Journal of Agricultural and Food Chemistry, 2008, 56, 7243-7253.	2.4	26
67	Lack of effect of oral supplementation with antioxidants on cholesterol oxidation product concentration of human plasma, as revealed by an improved gas chromatography method. Analytical and Bioanalytical Chemistry, 2007, 389, 277-289.	1.9	5
68	Optimization of analytical methods for the assessment of the quality of fats and oils used in continuous deep fat frying. Grasas Y Aceites, 2007, 58, .	0.3	2
69	Increase of geometrical and positional fatty acid isomers in dark meat from broilers fed heated oils. Poultry Science, 2005, 84, 1942-1954.	1.5	15
70	Effect of dietary fish oil, \hat{l} ±-tocopheryl acetate, and zinc supplementation on the composition and consumer acceptability of chicken meat. Poultry Science, 2004, 83, 282-292.	1.5	97
71	Modified ferrous oxidation-xylenol orange method to determine lipid hydroperoxides in fried snacks. European Journal of Lipid Science and Technology, 2004, 106, 688-696.	1.0	32