N-T Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8917118/publications.pdf Version: 2024-02-01

N-T NCUVEN

#	Article	IF	CITATIONS
1	Micromixers—a review. Journal of Micromechanics and Microengineering, 2005, 15, R1-R16.	2.6	1,458
2	Fundamentals and applications of inertial microfluidics: a review. Lab on A Chip, 2016, 16, 10-34.	6.0	737
3	Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Progress in Materials Science, 2017, 89, 31-91.	32.8	467
4	MEMS-Micropumps: A Review. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 384-392.	1.5	465
5	Nanofluidic Devices and Their Applications. Analytical Chemistry, 2008, 80, 2326-2341.	6.5	345
6	Micromachined flow sensors—a review. Flow Measurement and Instrumentation, 1997, 8, 7-16.	2.0	342
7	Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010, 4, 32204.	2.4	337
8	Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small, 2018, 14, 1702153.	10.0	335
9	Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 2020, 5, 1-9.	3.1	328
10	Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 2012, 12, 1-16.	2.2	324
11	Lab on a chip for continuous-flow magnetic cell separation. Lab on A Chip, 2015, 15, 959-970.	6.0	299
12	Rare cell isolation and analysis in microfluidics. Lab on A Chip, 2014, 14, 626.	6.0	273
13	Magnetic digital microfluidics – a review. Lab on A Chip, 2017, 17, 994-1008.	6.0	256
14	Active droplet sorting in microfluidics: a review. Lab on A Chip, 2017, 17, 751-771.	6.0	250
15	A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy and Environmental Science, 2012, 5, 8225.	30.8	242
16	Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab on A Chip, 2018, 18, 1174-1196.	6.0	234
17	Avoiding Pre-Isolation Step in Exosome Analysis: Direct Isolation and Sensitive Detection of Exosomes Using Gold-Loaded Nanoporous Ferric Oxide Nanozymes. Analytical Chemistry, 2019, 91, 3827-3834.	6.5	209
18	SUâ€8 as a structural material for labsâ€onâ€chips and microelectromechanical systems. Electrophoresis, 2007, 28, 4539-4551.	2.4	206

#	Article	IF	CITATIONS
19	A review on membraneless laminar flow-based fuel cells. International Journal of Hydrogen Energy, 2011, 36, 5675-5694.	7.1	205
20	The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review. Journal of Microelectromechanical Systems, 2015, 24, 1663-1677.	2.5	203
21	A polymeric microgripper with integrated thermal actuators. Journal of Micromechanics and Microengineering, 2004, 14, 969-974.	2.6	201
22	Active droplet generation in microfluidics. Lab on A Chip, 2016, 16, 35-58.	6.0	199
23	A micro optofluidic splitter and switch based on hydrodynamic spreading. Journal of Micromechanics and Microengineering, 2007, 17, 2169-2174.	2.6	188
24	Micro-optofluidic Lenses: A review. Biomicrofluidics, 2010, 4, .	2.4	179
25	Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical, 2018, 263, 151-176.	7.8	175
26	Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Advanced Drug Delivery Reviews, 2013, 65, 1403-1419.	13.7	173
27	Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomedical Microdevices, 2017, 19, 37.	2.8	161
28	Engineering microfluidic concentration gradient generators for biological applications. Microfluidics and Nanofluidics, 2014, 16, 1-18.	2.2	152
29	Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Scientific Reports, 2014, 4, 4527.	3.3	152
30	Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. Journal Physics D: Applied Physics, 2008, 41, 085502.	2.8	143
31	Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. Journal of Micromechanics and Microengineering, 2006, 16, 1681-1688.	2.6	137
32	High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluidics and Nanofluidics, 2011, 10, 619-625.	2.2	132
33	Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 2017, 8, 186.	2.9	131
34	Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review. Journal of Micromechanics and Microengineering, 2006, 16, R1-R12.	2.6	130
35	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	2.9	130
36	Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst, The, 2017, 142, 2211-2219.	3.5	129

#	Article	IF	CITATIONS
37	Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosensors and Bioelectronics, 2020, 166, 112460.	10.1	129
38	Gold-Loaded Nanoporous Ferric Oxide Nanocubes with Peroxidase-Mimicking Activity for Electrocatalytic and Colorimetric Detection of Autoantibody. Analytical Chemistry, 2017, 89, 11005-11013.	6.5	128
39	A fully polymeric micropump with piezoelectric actuator. Sensors and Actuators B: Chemical, 2004, 97, 137-143.	7.8	126
40	Miniature valveless pumps based on printed circuit board technique. Sensors and Actuators A: Physical, 2001, 88, 104-111.	4.1	120
41	Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. Journal of Materials Chemistry C, 2016, 4, 10061-10068.	5.5	119
42	Advanced liquid biopsy technologies for circulating biomarker detection. Journal of Materials Chemistry B, 2019, 7, 6670-6704.	5.8	118
43	Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon, 2020, 163, 385-394.	10.3	118
44	Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet. Langmuir, 2010, 26, 12553-12559.	3.5	116
45	Nanoarchitecture Frameworks for Electrochemical miRNA Detection. Trends in Biochemical Sciences, 2019, 44, 433-452.	7.5	115
46	Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluidics and Nanofluidics, 2014, 17, 305-316.	2.2	114
47	Formation and manipulation of ferrofluid droplets at a microfluidic <i>T</i> -junction. Journal of Micromechanics and Microengineering, 2010, 20, 045004.	2.6	113
48	Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Scientific Reports, 2015, 5, 15083.	3.3	113
49	Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab on A Chip, 2007, 7, 520.	6.0	112
50	Nonlinear Deformation of a Ferrofluid Droplet in a Uniform Magnetic Field. Langmuir, 2011, 27, 14834-14841.	3.5	111
51	Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. Nature Medicine, 2014, 20, 1069-1073.	30.7	111
52	Nonlinear diffusive mixing in microchannels: theory and experiments. Journal of Micromechanics and Microengineering, 2004, 14, 604-611.	2.6	109
53	Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 2016, 1, 1-17.	3.1	108
54	Thermoresistive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications. Journal of Microelectromechanical Systems, 2017, 26, 966-986.	2.5	108

#	Article	IF	CITATIONS
55	Porous nanozymes: the peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. Journal of Materials Chemistry B, 2018, 6, 4783-4791.	5.8	107
56	An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst, The, 2018, 143, 1662-1669.	3.5	106
57	Recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics, 2018, 12, 031501.	2.4	105
58	Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. Biosensors, 2020, 10, 182.	4.7	102
59	Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS Nano, 2019, 13, 11572-11581.	14.6	101
60	Manipulation of liquid marbles. Microfluidics and Nanofluidics, 2015, 19, 483-495.	2.2	100
61	Manipulation of ferrofluid droplets using planar coils. Applied Physics Letters, 2006, 89, 052509.	3.3	99
62	Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors and Actuators B: Chemical, 2018, 267, 14-25.	7.8	99
63	Thermally mediated droplet formation in microchannels. Applied Physics Letters, 2007, 91, .	3.3	98
64	A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab on A Chip, 2007, 7, 1012.	6.0	98
65	Graphite on paper as material for sensitive thermoresistive sensors. Journal of Materials Chemistry C, 2015, 3, 8776-8779.	5.5	98
66	Digital polymerase chain reaction technology – recent advances and future perspectives. Lab on A Chip, 2018, 18, 3717-3732.	6.0	98
67	Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sensors and Actuators B: Chemical, 2005, 107, 965-974.	7.8	95
68	Optical detection for droplet size control in microfluidic droplet-based analysis systems. Sensors and Actuators B: Chemical, 2006, 117, 431-436.	7.8	92
69	Rapid magnetofluidic mixing in a uniform magnetic field. Lab on A Chip, 2012, 12, 4772.	6.0	92
70	Microfluidic Technology for the Generation of Cell Spheroids and Their Applications. Micromachines, 2017, 8, 94.	2.9	92
71	An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluidics and Nanofluidics, 2011, 11, 1-10.	2.2	90
72	Mesoporous Iron Oxide Synthesized Using Poly(styrene- <i>b</i> acrylic acid- <i>b</i> ethylene glycol) Block Copolymer Micelles as Templates for Colorimetric and Electrochemical Detection of Glucose. ACS Applied Materials & amp; Interfaces, 2018, 10, 1039-1049.	8.0	90

#	Article	IF	CITATIONS
73	Micro check valves for integration into polymeric microfluidic devices. Journal of Micromechanics and Microengineering, 2004, 14, 69-75.	2.6	89
74	Slug flow heat transfer without phase change in microchannels: A review. Chemical Engineering Science, 2015, 126, 283-295.	3.8	89
75	Thermally mediated breakup of drops in microchannels. Applied Physics Letters, 2006, 89, 234101.	3.3	88
76	High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device. RSC Advances, 2014, 4, 33149.	3.6	88
77	A lab-on-a-chip for detection of nerve agent sarin in blood. Lab on A Chip, 2008, 8, 885.	6.0	87
78	Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluidics and Nanofluidics, 2011, 11, 177-187.	2.2	86
79	A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sensors and Actuators B: Chemical, 2010, 151, 133-139.	7.8	85
80	Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation. Sensors and Actuators A: Physical, 1999, 77, 229-236.	4.1	84
81	Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization. Sensors and Actuators B: Chemical, 2016, 222, 735-740.	7.8	84
82	Cell stretching devices as research tools: engineering and biological considerations. Lab on A Chip, 2016, 16, 3193-3203.	6.0	79
83	Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA. Chemical Communications, 2017, 53, 8231-8234.	4.1	79
84	Core-shell microparticles: Generation approaches and applications. Journal of Science: Advanced Materials and Devices, 2020, 5, 417-435.	3.1	79
85	RNA Biomarkers: Diagnostic and Prognostic Potentials and Recent Developments of Electrochemical Biosensors. Small Methods, 2017, 1, 1700131.	8.6	79
86	Convective–diffusive transport in parallel lamination micromixers. Microfluidics and Nanofluidics, 2005, 1, 208-217.	2.2	78
87	Digital microfluidics with a magnetically actuated floating liquid marble. Lab on A Chip, 2016, 16, 2211-2218.	6.0	78
88	Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluidics and Nanofluidics, 2009, 6, 847-852.	2.2	77
89	Microfluidic platform for controlling the differentiation of embryoid bodies. Lab on A Chip, 2009, 9, 2591.	6.0	77
90	Development of a polymeric micro fuel cell containing laser-micromachined flow channels. Journal of Micromechanics and Microengineering, 2005, 15, 231-236.	2.6	76

#	Article	IF	CITATIONS
91	Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosensors and Bioelectronics, 2018, 101, 275-281.	10.1	76
92	Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors and Actuators A: Physical, 2000, 79, 115-121.	4.1	75
93	Modelling and optimization of micro optofluidic lenses. Lab on A Chip, 2009, 9, 1178.	6.0	75
94	A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab on A Chip, 2016, 16, 3947-3956.	6.0	73
95	Air-breathing membraneless laminar flow-based fuel cell with flow-through anode. International Journal of Hydrogen Energy, 2012, 37, 3466-3476.	7.1	72
96	Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide?. Journal of Materials Chemistry B, 2019, 7, 5412-5422.	5.8	72
97	Thermally mediated control of liquid microdroplets at a bifurcation. Journal Physics D: Applied Physics, 2009, 42, 065503.	2.8	71
98	An Electrochemical Method for the Detection of Disease pecific Exosomes. ChemElectroChem, 2017, 4, 967-971.	3.4	71
99	Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Applied Physics Letters, 2014, 104, .	3.3	70
100	Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension. Journal Physics D: Applied Physics, 2008, 41, 165501.	2.8	69
101	Capillary Filling in Closed End Nanochannels. Langmuir, 2010, 26, 13251-13255.	3.5	69
102	Ferrofluids for heat transfer enhancement under an external magnetic field. International Journal of Heat and Mass Transfer, 2018, 123, 110-121.	4.8	69
103	Surface Acoustic Wave Driven Microfluidics – A Review. Micro and Nanosystems, 2010, 2, 217-225.	0.6	69
104	Thermal Flow Sensors for Harsh Environments. Sensors, 2017, 17, 2061.	3.8	68
105	Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. Journal of Colloid and Interface Science, 2015, 437, 28-34.	9.4	67
106	A polymeric piezoelectric micropump based on lamination technology. Journal of Micromechanics and Microengineering, 2004, 14, 632-638.	2.6	66
107	A floating self-propelling liquid marble containing aqueous ethanol solutions. RSC Advances, 2015, 5, 101006-101012.	3.6	65
108	Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors. Sensors and Actuators A: Physical, 1997, 62, 506-512.	4.1	64

#	Article	IF	CITATIONS
109	A laser-micromachined polymeric membraneless fuel cell. Journal of Micromechanics and Microengineering, 2007, 17, 1107-1113.	2.6	64
110	Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluidics and Nanofluidics, 2009, 6, 253-259.	2.2	64
111	Advances in Microfluidicsâ€Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive Systemâ€onâ€aâ€Chip. Advanced Biology, 2018, 2, 1700197.	3.0	64
112	Numerical study of the formation process of ferrofluid droplets. Physics of Fluids, 2011, 23, .	4.0	63
113	Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Scientific Reports, 2015, 5, 11425.	3.3	63
114	Challenges and perspectives in the development of paper-based lateral flow assays. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	63
115	Thermocapillary actuation of droplet in a planar microchannel. Microfluidics and Nanofluidics, 2008, 5, 205-214.	2.2	62
116	Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Advances, 2014, 4, 62076-62085.	3.6	62
117	Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. Analyst, The, 2020, 145, 7680-7686.	3.5	62
118	Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Advances, 2020, 10, 43682-43703.	3.6	62
119	Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment. Lab on A Chip, 2005, 5, 1320.	6.0	61
120	An air-breathing microfluidic formic acid fuel cell with a porous planar anode: experimental and numerical investigations. Journal of Micromechanics and Microengineering, 2010, 20, 105008.	2.6	61
121	Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. Materials Horizons, 2021, 8, 2123-2150.	12.2	61
122	Deformation of Ferrofluid Marbles in the Presence of a Permanent Magnet. Langmuir, 2013, 29, 13982-13989.	3.5	60
123	Electrochemical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 94, 63-73.	10.1	60
124	Highly sensitive 4H-SiC pressure sensor at cryogenic and elevatedÂtemperatures. Materials and Design, 2018, 156, 441-445.	7.0	60
125	Liquid Marbles as Miniature Reactors for Chemical and Biological Applications. Processes, 2020, 8, 793.	2.8	60
126	Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics, 2006, 3, 101-108.	2.2	59

#	Article	IF	CITATIONS
127	Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluidics and Nanofluidics, 2007, 3, 571-579.	2.2	59
128	Circulating tumor microemboli: Progress in molecular understanding and enrichment technologies. Biotechnology Advances, 2018, 36, 1367-1389.	11.7	59
129	Laser induced graphene for biosensors. Sustainable Materials and Technologies, 2020, 25, e00205.	3.3	59
130	Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films. Journal of Materials Chemistry C, 2014, 2, 7176-7179.	5.5	58
131	Modeling and optimization of planar microcoils. Journal of Micromechanics and Microengineering, 2008, 18, 095018.	2.6	56
132	Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosensors and Bioelectronics, 2017, 87, 615-621.	10.1	56
133	Hybrid-assembled micro dosing system using silicon-based micropump/ valve and mass flow sensor. Sensors and Actuators A: Physical, 1998, 69, 85-91.	4.1	55
134	Thermal mixing of two miscible fluids in a T-shaped microchannel. Biomicrofluidics, 2010, 4, 44102.	2.4	55
135	Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Scientific Reports, 2016, 6, 28499.	3.3	55
136	Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. Journal Physics D: Applied Physics, 2017, 50, 215401.	2.8	54
137	Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 1463-1471.	3.0	53
138	Air-breathing microfluidic fuel cell with fuel reservoir. Journal of Power Sources, 2012, 209, 312-317.	7.8	53
139	Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosensors and Bioelectronics, 2019, 139, 111315.	10.1	53
140	Prediction of Necrotic Core and Hypoxic Zone of Multicellular Spheroids in a Microbioreactor with a U-Shaped Barrier. Micromachines, 2018, 9, 94.	2.9	52
141	Piezoresistive Effect of p-Type Single Crystalline 3C-SiC Thin Film. IEEE Electron Device Letters, 2014, 35, 399-401.	3.9	51
142	Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. Micromachines, 2019, 10, 408.	2.9	51
143	Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels. Analytical Chemistry, 2019, 91, 4077-4084.	6.5	51
144	Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry. Sensors and Actuators A: Physical, 2007, 138, 203-212.	4.1	50

#	Article	IF	CITATIONS
145	A polymeric cell stretching device for real-time imaging with optical microscopy. Biomedical Microdevices, 2013, 15, 1043-1054.	2.8	50
146	Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays. Biomicrofluidics, 2016, 10, 044103.	2.4	50
147	Coalescence Processes of Droplets and Liquid Marbles. Micromachines, 2017, 8, 336.	2.9	50
148	Generation and manipulation of monodispersed ferrofluid emulsions: The effect of a uniform magnetic field in flow-focusing and T-junction configurations. Physical Review E, 2011, 84, 036317.	2.1	49
149	Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion–contraction cavity arrays. Biomicrofluidics, 2015, 9, 044108.	2.4	49
150	Single-Crystalline 3C-SiC anodically Bonded onto Glass: An Excellent Platform for High-Temperature Electronics and Bioapplications. ACS Applied Materials & Interfaces, 2017, 9, 27365-27371.	8.0	49
151	Highly sensitive pressure sensors employing 3C-SiC nanowires fabricated on a free standing structure. Materials and Design, 2018, 156, 16-21.	7.0	49
152	Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device. Analytical Chemistry, 2017, 89, 4387-4391.	6.5	48
153	Optical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 92, 668-678.	10.1	48
154	Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring. Advanced Science, 2020, 7, 2001294.	11.2	48
155	Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics, 2020, 168, 112429.	10.1	48
156	High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1422-1430.	4.0	47
157	Multiphysics microfluidics for cell manipulation and separation: a review. Lab on A Chip, 2022, 22, 423-444.	6.0	47
158	Giant piezoresistive effect by optoelectronic coupling in a heterojunction. Nature Communications, 2019, 10, 4139.	12.8	46
159	Advances in Rational Design and Materials of Highâ€Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	10.0	46
160	Rapid Mixing Using Two-Phase Hydraulic Focusing in Microchannels. Biomedical Microdevices, 2005, 7, 13-20.	2.8	45
161	Thermocapillary Effect of a Liquid Plug in Transient Temperature Fields. Japanese Journal of Applied Physics, 2005, 44, 1139-1142.	1.5	45
162	The Piezoresistive Effect in Top–Down Fabricated p-Type 3C-SiC Nanowires. IEEE Electron Device Letters, 2016, 37, 1029-1032.	3.9	45

#	Article	IF	CITATIONS
163	Effects of magnetic nanoparticles on mixing in droplet-based microfluidics. Physics of Fluids, 2019, 31,	4.0	45
164	Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab on A Chip, 2012, 12, 287-294.	6.0	44
165	Heat transfer enhancement by recirculating flow within liquid plugs in microchannels. International Journal of Heat and Mass Transfer, 2012, 55, 1947-1956.	4.8	44
166	Deformation of a floating liquid marble. Soft Matter, 2015, 11, 4576-4583.	2.7	44
167	Gold-loaded nanoporous iron oxide nanocubes: a novel dispersible capture agent for tumor-associated autoantibody analysis in serum. Nanoscale, 2017, 9, 8805-8814.	5.6	44
168	Liquid marbles as biochemical reactors for the polymerase chain reaction. Lab on A Chip, 2019, 19, 3220-3227.	6.0	44
169	Microneedle Arrays for Sampling and Sensing Skin Interstitial Fluid. Chemosensors, 2021, 9, 83.	3.6	44
170	Eccentricity Effect of Micropatterned Surface on Contact Angle. Langmuir, 2012, 28, 4793-4799.	3.5	43
171	Negative magnetophoresis in diluted ferrofluid flow. Lab on A Chip, 2015, 15, 2998-3005.	6.0	43
172	Floating mechanism of a small liquid marble. Scientific Reports, 2016, 6, 21777.	3.3	43
173	A PCR-free electrochemical method for messenger RNA detection in cancer tissue samples. Biosensors and Bioelectronics, 2017, 98, 227-233.	10.1	43
174	Electro-osmotic control of the interface position of two-liquid flow through a microchannel. Journal of Micromechanics and Microengineering, 2007, 17, 358-366.	2.6	42
175	Anti-flooding cathode catalyst layer for high performance PEM fuel cell. Electrochemistry Communications, 2009, 11, 897-900.	4.7	42
176	Liquid marbles as bioreactors for the study of three-dimensional cell interactions. Biomedical Microdevices, 2017, 19, 31.	2.8	42
177	Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Lab on A Chip, 2019, 19, 2811-2821.	6.0	42
178	Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Applied Physics Express, 2015, 8, 061303.	2.4	41
179	Experimental Investigation of Piezoresistive Effect in p-Type 4H–SiC. IEEE Electron Device Letters, 2017, 38, 955-958.	3.9	41
180	An Onâ€Chip SiC MEMS Device with Integrated Heating, Sensing, and Microfluidic Cooling Systems. Advanced Materials Interfaces, 2018, 5, 1800764.	3.7	41

#	Article	IF	CITATIONS
181	DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst, The, 2018, 143, 4802-4818.	3.5	41
182	Novel approaches in cancer management with circulating tumor cell clusters. Journal of Science: Advanced Materials and Devices, 2019, 4, 1-18.	3.1	41
183	Liquid marble-based digital microfluidics – fundamentals and applications. Lab on A Chip, 2021, 21, 1199-1216.	6.0	41
184	Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell. Electrochimica Acta, 2010, 55, 2706-2711.	5.2	40
185	Rapid determination of vitamin B12 concentration with a chemiluminescence lab on a chip. Lab on A Chip, 2012, 12, 2353.	6.0	40
186	Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis. Journal of Micromechanics and Microengineering, 2005, 15, 2289-2297.	2.6	39
187	Polymer-based device for efficient mixing of viscoelastic fluids. Applied Physics Letters, 2006, 88, 224103.	3.3	39
188	Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance. Sensors and Actuators B: Chemical, 2008, 130, 836-841.	7.8	39
189	Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Advances, 2015, 5, 82121-82126.	3.6	39
190	Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. Journal of Chemical Physics, 2006, 124, 021103.	3.0	38
191	High-Throughput Polymerase Chain Reaction in Parallel Circular Loops Using Magnetic Actuation. Analytical Chemistry, 2008, 80, 6127-6130.	6.5	38
192	Micromixer based on viscoelastic flow instability at low Reynolds number. Biomicrofluidics, 2009, 3, 014106.	2.4	38
193	Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Advances, 2015, 5, 106083-106086.	3.6	38
194	Focused Flow Micropump Using Ultrasonic Flexural Plate Waves. Biomedical Microdevices, 2000, 2, 169-174.	2.8	37
195	CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF AQUEOUS TiO ₂ NANOFLUID UNDER LAMINAR FLOW CONDITIONS. International Journal of Nanoscience, 2008, 07, 325-331.	0.7	37
196	Analysis of capillary filling in nanochannels with electroviscous effects. Microfluidics and Nanofluidics, 2009, 7, 519-530.	2.2	37
197	On-Chip Microparticle and Cell Washing Using Coflow of Viscoelastic Fluid and Newtonian Fluid. Analytical Chemistry, 2017, 89, 9574-9582.	6.5	37
198	Excellent Rectifying Properties of the n-3C-SiC/p-Si Heterojunction Subjected to High Temperature Annealing for Electronics, MEMS, and LED Applications. Scientific Reports, 2017, 7, 17734.	3.3	37

#	Article	IF	CITATIONS
199	A Rapid Magnetofluidic Micromixer Using Diluted Ferrofluid. Micromachines, 2017, 8, 37.	2.9	37
200	Magnetophoretic separation of diamagnetic particles through parallel ferrofluid streams. Sensors and Actuators B: Chemical, 2018, 275, 459-469.	7.8	37
201	Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sensors and Actuators A: Physical, 2018, 279, 293-305.	4.1	37
202	A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosensors and Bioelectronics, 2019, 126, 102-107.	10.1	37
203	Nano strain-amplifier: Making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Applied Physics Letters, 2016, 109, .	3.3	36
204	Liquid marble coalescence <i>via</i> vertical collision. Soft Matter, 2018, 14, 4160-4168.	2.7	36
205	Evaporation dynamics of liquid marbles at elevated temperatures. RSC Advances, 2018, 8, 15436-15443.	3.6	36
206	Grapheneâ€Oxideâ€Loaded Superparamagnetic Iron Oxide Nanoparticles for Ultrasensitive Electrocatalytic Detection of MicroRNA. ChemElectroChem, 2018, 5, 2488-2495.	3.4	36
207	Time-dependent model of mixed electroosmotic/pressure-driven three immiscible fluids in a rectangular microchannel. International Journal of Heat and Mass Transfer, 2010, 53, 772-785.	4.8	35
208	A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane. Microfluidics and Nanofluidics, 2011, 10, 513-519.	2.2	35
209	Magnetophoresis of diamagnetic microparticles in a weak magnetic field. Lab on A Chip, 2014, 14, 4609-4615.	6.0	35
210	Evaporation of Ethanol–Water Binary Mixture Sessile Liquid Marbles. Langmuir, 2016, 32, 6097-6104.	3.5	35
211	Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	35
212	Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid. RSC Advances, 2017, 7, 3461-3469.	3.6	35
213	Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels. Lab on A Chip, 2018, 18, 1292-1297.	6.0	35
214	Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery. Lab on A Chip, 2018, 18, 3207-3215.	6.0	35
215	One-dimensional actuation of a ferrofluid droplet by planar microcoils. Journal Physics D: Applied Physics, 2009, 42, 015004.	2.8	34
216	Reliable addition of reagents into microfluidic droplets. Microfluidics and Nanofluidics, 2010, 8, 409-416.	2.2	34

#	Article	IF	CITATIONS
217	Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks. International Journal of Heat and Mass Transfer, 2015, 86, 455-464.	4.8	34
218	A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics. Advanced Functional Materials, 2020, 30, 2004655.	14.9	34
219	Multiplexed serpentine microchannels for high-throughput sorting of disseminated tumor cells from malignant pleural effusion. Sensors and Actuators B: Chemical, 2021, 337, 129758.	7.8	34
220	A method for simultaneously determining the zeta potentials of the channel surface and the tracer particles using microparticle image velocimetry technique. Electrophoresis, 2006, 27, 620-627.	2.4	33
221	Microfluidic rheometer based on hydrodynamic focusing. Measurement Science and Technology, 2008, 19, 085405.	2.6	33
222	Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab on A Chip, 2015, 15, 996-999.	6.0	33
223	Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens. Optics Letters, 2011, 36, 657.	3.3	32
224	Self-Aligned Interdigitated Transducers for Acoustofluidics. Micromachines, 2016, 7, 216.	2.9	32
225	Optical measurement of flow field and concentration field inside a moving nanoliter droplet. Sensors and Actuators A: Physical, 2007, 133, 317-322.	4.1	31
226	A Stepper Micropump for Ferrofluid Driven Microfluidic Systems. Micro and Nanosystems, 2009, 1, 17-21.	0.6	31
227	Droplet Coalescence in Microfluidic Systems. Micro and Nanosystems, 2011, 3, 131-136.	0.6	31
228	Eccentricity effects of microhole arrays on drag reduction efficiency of microchannels with a hydrophobic wall. Physics of Fluids, 2012, 24, .	4.0	31
229	Flow visualization and heat transfer characteristics of gas–liquid two-phase flow in microtube under constant heat flux at wall. International Journal of Heat and Mass Transfer, 2013, 56, 350-359.	4.8	31
230	Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system. Nanoscale, 2014, 6, 5270-5278.	5.6	31
231	Manipulation schemes and applications of liquid marbles for micro total analysis systems. Microelectronic Engineering, 2018, 197, 87-95.	2.4	31
232	Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles. Industrial & Engineering Chemistry Research, 2020, 59, 3772-3783.	3.7	31
233	Core-Shell Beads Made by Composite Liquid Marble Technology as A Versatile Microreactor for Polymerase Chain Reaction. Micromachines, 2020, 11, 242.	2.9	31
234	Modelling, fabrication and characterization of a polymeric micromixer based on sequential segmentation. Biomedical Microdevices, 2006, 8, 133-139.	2.8	30

#	Article	IF	CITATIONS
235	Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids. Biomicrofluidics, 2008, 2, 34101.	2.4	30
236	Liquid Marble as Bioreactor for Engineering Three-Dimensional Toroid Tissues. Scientific Reports, 2017, 7, 12388.	3.3	30
237	Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture. Biomedical Microdevices, 2017, 19, 74.	2.8	30
238	Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst, The, 2018, 143, 3021-3028.	3.5	30
239	Paper-Based Electronics Using Graphite and Silver Nanoparticles for Respiration Monitoring. IEEE Sensors Journal, 2019, 19, 11784-11790.	4.7	30
240	The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. Journal of Materials Chemistry C, 2015, 3, 1172-1176.	5.5	29
241	Mass transport improvement in microscale using diluted ferrofluid and a non-uniform magnetic field. RSC Advances, 2016, 6, 62439-62444.	3.6	29
242	Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite. Applied Physics Letters, 2017, 110, .	3.3	29
243	Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Analytical and Bioanalytical Chemistry, 2009, 394, 1505-1508.	3.7	28
244	Biconcave micro-optofluidic lens with low-refractive-index liquids. Optics Letters, 2009, 34, 3622.	3.3	28
245	A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length. Microfluidics and Nanofluidics, 2010, 9, 889-896.	2.2	28
246	High thermosensitivity of silicon nanowires induced by amorphization. Materials Letters, 2016, 177, 80-84.	2.6	28
247	Dynamic behaviour of a magnetically actuated floating liquid marble. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	28
248	A portable, hand-powered microfluidic device for sorting of biological particles. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	28
249	High-temperature tolerance of the piezoresistive effect in p-4H-SiC for harsh environment sensing. Journal of Materials Chemistry C, 2018, 6, 8613-8617.	5.5	28
250	Capillarity: revisiting the fundamentals of liquid marbles. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	28
251	A novel thermal sensor concept for flow direction and flow velocity. IEEE Sensors Journal, 2005, 5, 1224-1234.	4.7	27
252	Interfacial Tension Measurement With an Optofluidic Sensor. IEEE Sensors Journal, 2007, 7, 692-697.	4.7	27

#	Article	IF	CITATIONS
253	Flexible and multifunctional electronics fabricated by a solvent-free and user-friendly method. RSC Advances, 2016, 6, 77267-77274.	3.6	27
254	An electrochemical method for sensitive and rapid detection of FAM134B protein in colon cancer samples. Scientific Reports, 2017, 7, 133.	3.3	27
255	Manipulation of a floating liquid marble using dielectrophoresis. Lab on A Chip, 2018, 18, 3770-3779.	6.0	27
256	Picking up and placing a liquid marble using dielectrophoresis. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	27
257	Modeling of mass transfer enhancement in a magnetofluidic micromixer. Physics of Fluids, 2019, 31, .	4.0	27
258	Mesoporous gold–silver alloy films towards amplification-free ultra-sensitive microRNA detection. Journal of Materials Chemistry B, 2020, 8, 9512-9523.	5.8	27
259	Magnetofluidic spreading in microchannels. Microfluidics and Nanofluidics, 2012, 13, 655-663.	2.2	26
260	Robust Freeâ€Standing Nanoâ€Thin SiC Membranes Enable Direct Photolithography for MEMS Sensing Applications. Advanced Engineering Materials, 2018, 20, 1700858.	3.5	26
261	Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. Journal of Micromechanics and Microengineering, 2010, 20, 015018.	2.6	25
262	Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration. Optics Letters, 2010, 35, 327.	3.3	25
263	Analysis of chaotic mixing in plugs moving in meandering microchannels. Physical Review E, 2011, 84, 066309.	2.1	25
264	Orientation dependence of the pseudo-Hall effect in p-type 3C–SiC four-terminal devices under mechanical stress. RSC Advances, 2015, 5, 56377-56381.	3.6	25
265	Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody. Analyst, The, 2017, 142, 1900-1908.	3.5	25
266	Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry. Analytica Chimica Acta, 2017, 976, 84-93.	5.4	25
267	Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications. Frontiers in Chemistry, 2017, 5, 118.	3.6	25
268	Stretchable Inertial Microfluidic Device for Tunable Particle Separation. Analytical Chemistry, 2020, 92, 12473-12480.	6.5	25
269	Heat transfer in plug flow in cylindrical microcapillaries with constant surface heat flux. International Journal of Thermal Sciences, 2013, 64, 204-212.	4.9	24
270	Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomedical Microdevices, 2014, 16, 269-275.	2.8	24

#	Article	IF	CITATIONS
271	Detection of FGFR2 : FAM76A Fusion Gene in Circulating Tumor RNA Based on Catalytic Signal Amplification of Graphene Oxideâ€loaded Magnetic Nanoparticles. Electroanalysis, 2018, 30, 2293-2301.	2.9	24
272	The stress-strain relationship of liquid marbles under compression. Applied Physics Letters, 2019, 114, 043701.	3.3	24
273	Dielectrophoretic Trapping of a Floating Liquid Marble. Physical Review Applied, 2019, 11, .	3.8	24
274	Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. Lab on A Chip, 2022, 22, 2789-2800.	6.0	24
275	Diagnosis of transient electrokinetic flow in microfluidic channels. Physics of Fluids, 2007, 19, 017114.	4.0	23
276	A Digital Micro Magnetofluidic Platform For Lab-on-a-Chip Applications. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .	1.5	23
277	Measuring the Coefficient of Friction of a Small Floating Liquid Marble. Scientific Reports, 2016, 6, 38346.	3.3	23
278	Cryoprotectant-Free Freezing of Cells Using Liquid Marbles Filled with Hydrogel. ACS Applied Materials & Materials	8.0	23
279	Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 31418-31430.	8.0	23
280	Thermal flow sensor for ultra-low velocities based on printed circuit board technology. Measurement Science and Technology, 2001, 12, 2131-2136.	2.6	22
281	Temperature-induced droplet coalescence in microchannels. Biomicrofluidics, 2012, 6, 012811.	2.4	22
282	Reynolds numbers influence the directionality of self-propelled microjet engines in the 10â^'4 regime. Nanoscale, 2013, 5, 7277.	5.6	22
283	Droplet manipulation in a microfluidic chamber with acoustic radiation pressure and acoustic streaming. Soft Matter, 2014, 10, 8122-8132.	2.7	22
284	Unintentionally Doped Epitaxial 3C-SiC(111) Nanothin Film as Material for Highly Sensitive Thermal Sensors at High Temperatures. IEEE Electron Device Letters, 2018, 39, 580-583.	3.9	22
285	Isotropic piezoresistance of p-type 4H-SiC in (0001) plane. Applied Physics Letters, 2018, 113, .	3.3	22
286	Opto-electronic coupling in semiconductors: towards ultrasensitive pressure sensing. Journal of Materials Chemistry C, 2020, 8, 4713-4721.	5.5	22
287	Numerical Simulation of Droplet-Based Microfluidics - A Review. Micro and Nanosystems, 2010, 2, 193-201.	0.6	22
288	Generation of shock-free pressure waves in shaped resonators by boundary driving. Journal of the Acoustical Society of America, 2007, 121, 2515-2521.	1.1	21

#	Article	IF	CITATIONS
289	Manipulation of a droplet in a planar channel by periodic thermocapillary actuation. Journal of Micromechanics and Microengineering, 2008, 18, 045027.	2.6	21
290	Scattering and attenuation of surface acoustic waves in droplet actuation. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 355502.	2.1	21
291	Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent. Microfluidics and Nanofluidics, 2011, 10, 671-678.	2.2	21
292	Membraneless hydrogen peroxide micro semi-fuel cell for portable applications. RSC Advances, 2014, 4, 37284-37287.	3.6	21
293	Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification. Applied Physics Letters, 2017, 110, 141906.	3.3	21
294	Numerical Simulation of the Behavior of Toroidal and Spheroidal Multicellular Aggregates in Microfluidic Devices with Microwell and U-Shaped Barrier. Micromachines, 2017, 8, 358.	2.9	21
295	Challenge in particle delivery to cells in a microfluidic device. Drug Delivery and Translational Research, 2018, 8, 830-842.	5.8	21
296	Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.	4.3	21
297	Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Lab on A Chip, 2021, 21, 2008-2018.	6.0	21
298	Passive micromixer for luminol-peroxide chemiluminescence detection. Analyst, The, 2011, 136, 2586.	3.5	20
299	An efficient microfluidic sorter: implementation of double meandering micro striplines for magnetic particles switching. Microfluidics and Nanofluidics, 2011, 10, 1069-1078.	2.2	20
300	A continuous-flow droplet-based concentrator using ion concentration polarization. RSC Advances, 2015, 5, 44336-44341.	3.6	20
301	Onset of thermomagnetic convection around a vertically oriented hot-wire in ferrofluid. Journal of Magnetism and Magnetic Materials, 2018, 456, 300-306.	2.3	20
302	Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models. Analytical Chemistry, 2020, 92, 11558-11564.	6.5	20
303	A Wearable, Bending-Insensitive Respiration Sensor Using Highly Oriented Carbon Nanotube Film. IEEE Sensors Journal, 2021, 21, 7308-7315.	4.7	20
304	Reciprocating thermocapillary plug motion in an externally heated capillary. Microfluidics and Nanofluidics, 2006, 3, 39-46.	2.2	19
305	A simple method for evaluating and predicting chaotic advection in microfluidic slugs. Chemical Engineering Science, 2010, 65, 5382-5391.	3.8	19
306	Hydrodynamically mediated breakup of droplets in microchannels. Applied Physics Letters, 2011, 98, 054102.	3.3	19

#	Article	IF	CITATIONS
307	Ferrofluid plug as valve and actuator for whole-cell PCR on chip. Sensors and Actuators B: Chemical, 2012, 166-167, 893-897.	7.8	19
308	Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications. ACS Applied Materials & Interfaces, 2017, 9, 41641-41647.	8.0	19
309	An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research. Micromachines, 2017, 8, 256.	2.9	19
310	Highly sensitive p-type 4H-SiC van der Pauw sensor. RSC Advances, 2018, 8, 3009-3013.	3.6	19
311	A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip. Biomicrofluidics, 2018, 12, 024117.	2.4	19
312	A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications. Chemical Engineering Science, 2020, 212, 115339.	3.8	19
313	On-Demand Droplet Merging with an AC Electric Field for Multiple-Volume Droplet Generation. Analytical Chemistry, 2020, 92, 1147-1153.	6.5	19
314	Optothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics. Science Advances, 2020, 6, eaay2671.	10.3	19
315	Analytical model of mixed electroosmotic/pressure driven three immiscible fluids in a rectangular microchannel. International Journal of Heat and Mass Transfer, 2009, 52, 4459-4469.	4.8	18
316	The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces. Soft Matter, 2013, 9, 527-535.	2.7	18
317	Stretching cells – An approach for early cancer diagnosis. Experimental Cell Research, 2019, 378, 191-197.	2.6	18
318	Self-powered monolithic accelerometer using a photonic gate. Nano Energy, 2020, 76, 104950.	16.0	18
319	Particle Sorting in Microfluidic Systems. Micro and Nanosystems, 2010, 2, 202-216.	0.6	18
320	Low-cost electrochemical paper-based device for exosome detection. Analyst, The, 2022, 147, 3732-3740.	3.5	18
321	Long Path-Length Axial Absorption Detection in Photonic Crystal Fiber. Analytical Chemistry, 2008, 80, 4220-4224.	6.5	17
322	Capillary Filling in Nanochannels—Modeling, Fabrication, and Experiments. Heat Transfer Engineering, 2011, 32, 624-635.	1.9	17
323	An analytical model for plug flow in microcapillaries with circular cross section. International Journal of Heat and Fluid Flow, 2011, 32, 1005-1013.	2.4	17
324	A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids. Lab on A Chip, 2016, 16, 2946-2954.	6.0	17

#	Article	IF	CITATIONS
325	A Microfluidic Method for Investigating Ion-Specific Bubble Coalescence in Salt Solutions. Langmuir, 2016, 32, 11520-11524.	3.5	17
326	Three-Dimensional Modeling of Avascular Tumor Growth in Both Static and Dynamic Culture Platforms. Micromachines, 2019, 10, 580.	2.9	17
327	Accurate dielectrophoretic positioning of a floating liquid marble with a two-electrode configuration. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	17
328	An automated on-demand liquid marble generator based on electrohydrodynamic pulling. Review of Scientific Instruments, 2019, 90, 055102.	1.3	17
329	Polyacrylonitrileâ€carbon Nanotubeâ€polyacrylonitrile: A Versatile Robust Platform for Flexible Multifunctional Electronic Devices in Medical Applications. Macromolecular Materials and Engineering, 2019, 304, 1900014.	3.6	17
330	Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy. ACS Nano, 2022, 16, 10890-10903.	14.6	17
331	An analytical model for mixing based on time-interleaved sequential segmentation. Microfluidics and Nanofluidics, 2005, 1, 373-375.	2.2	16
332	Behavior of microdroplets in diffuser/nozzle structures. Microfluidics and Nanofluidics, 2009, 6, 835-846.	2.2	16
333	Enhanced electrophoretic DNA separation in photonic crystal fiber. Analytical and Bioanalytical Chemistry, 2009, 394, 1707-1710.	3.7	16
334	Thermocoalescence of microdroplets in a microfluidic chamber. Applied Physics Letters, 2012, 100, 254105.	3.3	16
335	A simple method for the formation of water-in-oil-in-water (W/O/W) double emulsions. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	16
336	RhoA and Rac1 in Liver Cancer Cells: Induction of Overexpression Using Mechanical Stimulation. Micromachines, 2020, 11, 729.	2.9	16
337	Ensembles of Photonic Beads: Optical Properties and Enhanced Light—Matter Interactions. Advanced Optical Materials, 2020, 8, 1901537.	7.3	16
338	Localized Surface Plasmon Enhanced Laser Reduction of Graphene Oxide for Wearable Strain Sensor. Advanced Materials Technologies, 2021, 6, 2001191.	5.8	16
339	Microfluidic sensor for dynamic surface tension measurement. IET Nanobiotechnology, 2006, 153, 102.	2.1	15
340	An analytical model for a liquid plug moving in curved microchannels. International Journal of Heat and Mass Transfer, 2010, 53, 1977-1985.	4.8	15
341	Double spiral detection channel for on-chip chemiluminescence detection. Sensors and Actuators B: Chemical, 2012, 169, 144-150.	7.8	15
342	An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells. Biomedical Microdevices, 2016, 18, 45.	2.8	15

#	Article	IF	CITATIONS
343	Microcalorimeter: Design considerations, materials and examples. Microelectronic Engineering, 2016, 158, 107-117.	2.4	15
344	Thermomagnetic Convection Around a Current-Carrying Wire in Ferrofluid. Journal of Heat Transfer, 2017, 139, .	2.1	15
345	Pneumatically actuated cell-stretching array platform for engineering cell patterns in vitro. Lab on A Chip, 2018, 18, 765-774.	6.0	15
346	Numerical simulation of combined natural and thermomagnetic convection around a current carrying wire in ferrofluid. Journal of Magnetism and Magnetic Materials, 2019, 489, 165383.	2.3	15
347	Biophysical properties of cells for cancer diagnosis. Journal of Biomechanics, 2019, 86, 1-7.	2.1	15
348	Influence of Interfacial Gas Enrichment on Controlled Coalescence of Oil Droplets in Water in Microfluidics. Langmuir, 2019, 35, 3615-3623.	3.5	15
349	Critical Trapping Conditions for Floating Liquid Marbles. Physical Review Applied, 2020, 13, .	3.8	15
350	A new structure of Tesla coupled nozzle in synthetic jet micro-pump. Sensors and Actuators A: Physical, 2020, 315, 112296.	4.1	15
351	High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. Journal of Hazardous Materials, 2020, 394, 122486.	12.4	15
352	Effect of Core Liquid Surface Tension on the Liquid Marble Shell. Advanced Materials Interfaces, 2021, 8, 2001591.	3.7	15
353	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie - International Edition, 2021, 60, 9660-9665.	13.8	15
354	Piezotronic effect in a normally off p-GaN/AlGaN/GaN HEMT toward highly sensitive pressure sensor. Applied Physics Letters, 2021, 118, 242104.	3.3	15
355	Controllable high-performance liquid marble micromixer. Lab on A Chip, 2022, 22, 1508-1518.	6.0	15
356	Enhanced Electrohydrodynamics for Electrospinning a Highly Sensitive Flexible Fiber-Based Piezoelectric Sensor. ACS Applied Electronic Materials, 2022, 4, 1301-1310.	4.3	15
357	Effect of resonator dimensions on nonlinear standing waves. Journal of the Acoustical Society of America, 2005, 117, 96-103.	1.1	14
358	Faster and improved microchip electrophoresis using a capillary bundle. Electrophoresis, 2007, 28, 4765-4768.	2.4	14
359	Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure. Optics Letters, 2011, 36, 1767.	3.3	14
360	An electrokinetically tunable optofluidic bi-concave lens. Lab on A Chip, 2012, 12, 3680.	6.0	14

#	Article	IF	CITATIONS
361	Multiarray cell stretching platform for high-magnification real-time imaging. Nanomedicine, 2013, 8, 543-553.	3.3	14
362	Magnetofluidic micromixer based on a complex rotating magnetic field. RSC Advances, 2017, 7, 52465-52474.	3.6	14
363	Electrical Resistance of Carbon Nanotube Yarns Under Compressive Transverse Pressure. IEEE Electron Device Letters, 2018, 39, 584-587.	3.9	14
364	Synthesis of nanoporous poly-melamine-formaldehyde (PMF) based on Schiff base chemistry as a highly efficient adsorbent. Analyst, The, 2019, 144, 342-348.	3.5	14
365	Stretching Induces Overexpression of RhoA and Rac1 GTPases in Breast Cancer Cells. Advanced Biology, 2020, 4, 1900222.	3.0	14
366	Direct Measurement of the Contents, Thickness, and Internal Pressure of Molybdenum Disulfide Nanoblisters. Nano Letters, 2020, 20, 3478-3484.	9.1	14
367	Three-dimensional visualization and analysis of flowing droplets in microchannels using real-time quantitative phase microscopy. Lab on A Chip, 2021, 21, 75-82.	6.0	14
368	A novel wind sensor concept based on thermal image measurement using a temperature sensor array. Sensors and Actuators A: Physical, 2004, 110, 323-327.	4.1	13
369	Micromixer based on Taylor dispersion. Journal of Physics: Conference Series, 2006, 34, 136-141.	0.4	13
370	Particle Transport in Microchannels. Numerical Heat Transfer, Part B: Fundamentals, 2007, 51, 141-157.	0.9	13
371	A micro optofluidic lens with short focal length. Journal of Micromechanics and Microengineering, 2009, 19, 085012.	2.6	13
372	Numerical investigation of upstream pressure fluctuation during growth and breakup of pendant drops. Chemical Engineering Science, 2011, 66, 5293-5300.	3.8	13
373	Microfluidic switch based on combined effect of hydrodynamics and electroosmosis. Microfluidics and Nanofluidics, 2011, 10, 965-976.	2.2	13
374	Magnetofluidics for manipulation of convective heat transfer. International Communications in Heat and Mass Transfer, 2017, 81, 149-154.	5.6	13
375	Pressure-Driven Filling of Closed-End Microchannel: Realization of Comb-Shaped Transducers for Acoustofluidics. Physical Review Applied, 2018, 10, .	3.8	13
376	A hot-film air flow sensor for elevated temperatures. Review of Scientific Instruments, 2019, 90, 015007.	1.3	13
377	Microfluidic Array Chip for Parallel Detection of Waterborne Bacteria. Micromachines, 2019, 10, 883.	2.9	13
378	IgM and IgA augmented autoantibody signatures improve earlyâ€stage detection of colorectal cancer prior to nodal and distant spread. Clinical and Translational Immunology, 2021, 10, e1330.	3.8	13

#	Article	IF	CITATIONS
379	Frequency Reconfigurable Smart Antenna With Integrated Electroactive Polymer for Far-Field Communication. IEEE Transactions on Antennas and Propagation, 2022, 70, 856-867.	5.1	13
380	Effects of photogenerated-hole diffusion on 3C-SiC/Si heterostructure optoelectronic position-sensitive detector. Journal Physics D: Applied Physics, 2021, 54, 265101.	2.8	13
381	Electrostatically excited liquid marble as a micromixer. Reaction Chemistry and Engineering, 2021, 6, 1386-1394.	3.7	13
382	Thermocapillary actuation of liquid plugs using a heater array. Sensors and Actuators A: Physical, 2007, 140, 145-155.	4.1	12
383	Modeling and experimental characterization of peak tailing in DNA gel electrophoresis. Microfluidics and Nanofluidics, 2007, 3, 323-332.	2.2	12
384	Fabrication technologies. , 2012, , 113-161.		12
385	Toward the commercialization of optofluidics. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	12
386	Degraded boiling heat transfer from hotwire in ferrofluid due to particle deposition. Applied Thermal Engineering, 2018, 142, 255-261.	6.0	12
387	Wireless Battery-Free SiC Sensors Operating in Harsh Environments Using Resonant Inductive Coupling. IEEE Electron Device Letters, 2019, 40, 609-612.	3.9	12
388	Micro Elastofluidics: Elasticity and Flexibility for Efficient Microscale Liquid Handling. Micromachines, 2020, 11, 1004.	2.9	12
389	PCR-Free Detection of Long Non-Coding HOTAIR RNA in Ovarian Cancer Cell Lines and Plasma Samples. Cancers, 2020, 12, 2233.	3.7	12
390	Highly-doped SiC resonator with ultra-large tuning frequency range by Joule heating effect. Materials and Design, 2020, 194, 108922.	7.0	12
391	Digital Imagingâ€based Colourimetry for Enzymatic Processes in Transparent Liquid Marbles. ChemPhysChem, 2021, 22, 99-105.	2.1	12
392	Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation. Biosensors, 2022, 12, 510.	4.7	12
393	Graphite-on-paper based tactile sensors using plastic laminating technique. , 2015, , .		11
394	Fabrication of nanoporous junctions using off-the-shelf Nafion membrane. Journal of Micromechanics and Microengineering, 2015, 25, 115019.	2.6	11
395	Liquid metal microcoils for sensing and actuation in lab-on-a-chip applications. Microsystem Technologies, 2015, 21, 519-526.	2.0	11
396	Thermoresistance of p â€Type 4H–SiC Integrated MEMS Devices for Highâ€Temperature Sensing. Advanced Engineering Materials, 2019, 21, 1801049.	3.5	11

#	Article	IF	CITATIONS
397	Mechanobiology in cardiology: Micro―and nanotechnologies to probe mechanosignaling. View, 2021, 2, 20200080.	5.3	11
398	In-air particle generation by on-chip electrohydrodynamics. Lab on A Chip, 2021, 21, 1779-1787.	6.0	11
399	Piezoresistive Effect with a Gauge Factor of 18â€ ⁻ 000 in a Semiconductor Heterojunction Modulated by Bonded Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 35046-35053.	8.0	11
400	Formation of core–shell droplets for the encapsulation of liquid contents. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	11
401	Electroosmotic control of width and position of liquid streams in hydrodynamic focusing. Microfluidics and Nanofluidics, 2009, 7, 489-497.	2.2	10
402	A tunable optofluidic lens based on combined effect of hydrodynamics and electroosmosis. Microfluidics and Nanofluidics, 2011, 10, 1033-1043.	2.2	10
403	Fabrication and Experimental Characterization of Nanochannels. Journal of Heat Transfer, 2012, 134, .	2.1	10
404	Growth mechanism for alternating supply epitaxy: the unique pathway to achieve uniform silicon carbide films on multiple large-diameter silicon substrates. RSC Advances, 2016, 6, 16662-16667.	3.6	10
405	Demonstration of Electron/Hole Injections in the Gate of \$p\$-GaN/AlGaN/GaN Power Transistors and Their Effect on Device Dynamic Performance. , 2019, , .		10
406	An amplification-free method for the detection of HOTAIR long non-coding RNA. Analytica Chimica Acta, 2020, 1132, 66-73.	5.4	10
407	Surfactant-free, UV-curable core–shell microcapsules in a hydrophilic PDMS microfluidic device. AIP Advances, 2020, 10, .	1.3	10
408	Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis, 2021, 42, 2230-2237.	2.4	10
409	Oscillating sessile liquid marble - A tool to assess effective surface tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127176.	4.7	10
410	The concept of light-harvesting, self-powered mechanical sensors using a monolithic structure. Nano Energy, 2022, 96, 107030.	16.0	10
411	Thermocapillary actuation of a water droplet encapsulated in an oil plug. Journal of Micromechanics and Microengineering, 2007, 17, 1843-1852.	2.6	9
412	Motion of a droplet through microfluidic ratchets. Physical Review E, 2009, 80, 046319.	2.1	9
413	Thermally Mediated Droplet Formation at a Microfluidic T-Junction. Micro and Nanosystems, 2011, 3, 65-75.	0.6	9
414	Instability of pressure driven viscous fluid streams in a microchannel under a normal electric field. International Journal of Heat and Mass Transfer, 2012, 55, 6994-7004.	4.8	9

#	Article	IF	CITATIONS
415	Combinational concentration gradient confinement through stagnation flow. Lab on A Chip, 2016, 16, 368-376.	6.0	9
416	Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating. Journal of Micromechanics and Microengineering, 2017, 27, 075008.	2.6	9
417	A Generalized Analytical Model for Joule Heating of Segmented Wires. Journal of Heat Transfer, 2018, 140, .	2.1	9
418	Characterization of the piezoresistance in highly doped p-type 3C-SiC at cryogenic temperatures. RSC Advances, 2018, 8, 29976-29979.	3.6	9
419	Impact of carrier injections on the threshold voltage in p-GaN gate AlGaN/GaN power HEMTs. Applied Physics Express, 2019, 12, 064001.	2.4	9
420	Controllable droplet generation at a microfluidic T-junction using AC electric field. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	9
421	Electrospray propelled by ionic wind in a bipolar system for direct delivery of charge reduced nanoparticles. Applied Physics Express, 2021, 14, 055001.	2.4	9
422	Electrohydrodynamic and Shear-Stress Interfacial Instability of Two Streaming Viscous Liquid Inside a Microchannel for Tangential Electric Fields. Micro and Nanosystems, 2012, 4, 14-24.	0.6	9
423	Generation of a Charge Carrier Gradient in a 3C-SiC/Si Heterojunction with Asymmetric Configuration. ACS Applied Materials & Interfaces, 2021, 13, 55329-55338.	8.0	9
424	Ultrasensitive Self-Powered Position-Sensitive Detector Based on n-3C-SiC/p-Si Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 768-775.	4.3	9
425	Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm® Hot Pressing. Micromachines, 2022, 13, 48.	2.9	9
426	A Procedure for the Motion of Particle-Encapsulated Droplets in Microchannels. Numerical Heat Transfer, Part B: Fundamentals, 2008, 53, 59-74.	0.9	8
427	Experimental and numerical investigation of thermal chaotic mixing in a T-shaped microchannel. Heat and Mass Transfer, 2011, 47, 1331-1339.	2.1	8
428	Environment-friendly wearable thermal flow sensors for noninvasive respiratory monitoring. , 2017, ,		8
429	Core-Shell Beads as Microreactors for Phylogrouping of E. coli Strains. Micromachines, 2020, 11, 761.	2.9	8
430	Calcium phosphate stability on melt electrowritten PCL scaffolds. Journal of Science: Advanced Materials and Devices, 2020, 5, 30-39.	3.1	8
431	Measuring the effective surface tension of a floating liquid marble using X-ray imaging. Soft Matter, 2021, 17, 4069-4076.	2.7	8
432	A Portable Device for LAMP Based Detection of SARS-CoV-2. Micromachines, 2021, 12, 1151.	2.9	8

#	Article	IF	CITATIONS
433	Analytical Modeling of Slip Flow in Parallel-plate Microchannels. Micro and Nanosystems, 2013, 5, 245-252.	0.6	8
434	Plasmaâ€Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
435	Atherothrombosisâ€onâ€Chip: A Siteâ€Specific Microfluidic Model for Thrombus Formation and Drug Discovery. Advanced Biology, 2022, 6, .	2.5	8
436	Development of a peristaltic pump in printed circuit boards. Journal of Micromechatronics, 2005, 3, 1-13.	1.9	7
437	Investigation of active interface control of pressure driven two-fluid flow in microchannels. Sensors and Actuators A: Physical, 2007, 133, 323-328.	4.1	7
438	Wicking in Paper Strips under Consideration of Liquid Absorption Capacity. Chemosensors, 2020, 8, 65.	3.6	7
439	Lithography and Etchingâ€Free Microfabrication of Silicon Carbide on Insulator Using Direct UV Laser Ablation. Advanced Engineering Materials, 2020, 22, 1901173.	3.5	7
440	ScAlN/3C-SiC/Si platform for monolithic integration of highly sensitive piezoelectric and piezoresistive devices. Applied Physics Letters, 2020, 116, 132902.	3.3	7
441	Mikrofluidik. , 2004, , .		7
442	A Stretchable Kirigamiâ€Inspired Selfâ€Powered Electroactive Sensor for Tensile Strain and Torsion Sensing. Advanced Engineering Materials, 2022, 24, 2100961.	3.5	7
443	Fabrication of micropumps with Q-switched Nd:YAG-lasers. , 2002, , .		6
444	Sample transport with thermocapillary force for microfluidics. Journal of Physics: Conference Series, 2006, 34, 967-972.	0.4	6
445	Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects. Journal of Physics: Conference Series, 2006, 34, 385-392.	0.4	6
446	Fluid Mechanics of Flow Through Rectangular Hydrophobic Microchannels. , 2011, , .		6
447	Nested PCR in magnetically actuated circular closed-loop PCR microchip system. Mikrochimica Acta, 2012, 177, 111-117.	5.0	6
448	Formation and breakup of compound pendant drops at the tip of a capillary and its effect on upstream velocity fluctuations. International Journal of Heat and Mass Transfer, 2012, 55, 1022-1029.	4.8	6
449	Self-triggering regime for synchronized formation of two droplets. Applied Physics Letters, 2014, 104, .	3.3	6
450	A rapid and cost-effective metallization technique for 3C–SiC MEMS using direct wire bonding. RSC Advances, 2018, 8, 15310-15314.	3.6	6

#	Article	IF	CITATIONS
451	Lapatinib inhibits doxorubicin induced migration of HER2-positive breast cancer cells. Inflammopharmacology, 2020, 28, 1375-1386.	3.9	6
452	Quasi-solid-state self-assembly of 1D-branched ZnSe/ZnS quantum rods into parallel monorail-like continuous films for solar devices. Nano Energy, 2021, 89, 106348.	16.0	6
453	Targeted Syntheses of Charged Porous Aromatic Frameworks for Iodine Enrichment and Release. Acta Chimica Sinica, 2016, 74, 67.	1.4	6
454	On-demand deterministic release of particles and cells using stretchable microfluidics. Nanoscale Horizons, 2022, 7, 414-424.	8.0	6
455	Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. Small, 2022, 18, 2105748.	10.0	6
456	Nonlinear standing waves in a resonator with feedback control. Journal of the Acoustical Society of America, 2007, 122, 38-41.	1.1	5
457	Microfluidic on-chip fluorescence-activated interface control system. Biomicrofluidics, 2010, 4, 044109.	2.4	5
458	Special issue on magnetic-based microfluidics. Microfluidics and Nanofluidics, 2012, 13, 527-528.	2.2	5
459	Conoscopic analysis of electric field driven planar aligned nematic liquid crystal. Applied Optics, 2014, 53, 2773.	1.8	5
460	Modelling of an uniaxial single-sided magnetically actuated cell-stretching device. Sensors and Actuators A: Physical, 2016, 252, 174-179.	4.1	5
461	Formation of silicon carbide nanowire on insulator through direct wet oxidation. Materials Letters, 2017, 196, 280-283.	2.6	5
462	A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts. Physics of Fluids, 2018, 30, .	4.0	5
463	Strain Effect in Highlyâ€Doped nâ€Type 3Câ€SiCâ€onâ€Glass Substrate for Mechanical Sensors and Mobility Enhancement. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800288.	1.8	5
464	Transparent crystalline cubic SiC-on-glass electrodes enable simultaneous electrochemistry and optical microscopy. Chemical Communications, 2019, 55, 7978-7981.	4.1	5
465	Functional Microarray Platform with Self-Assembled Monolayers on 3C-Silicon Carbide. Langmuir, 2020, 36, 13181-13192.	3.5	5
466	Toward on-board microchip synthesis of CdSe <i>vs.</i> PbSe nanocrystalline quantum dots as a spectral decoy for protecting space assets. Reaction Chemistry and Engineering, 2021, 6, 471-485.	3.7	5
467	Mixing in Microscale. , 2007, , 117-155.		5
468	Chaotic motion of microplugs under high-frequency thermocapillary actuation. Journal of Micromechanics and Microengineering, 2007, 17, 180-185.	2.6	4

#	Article	IF	CITATIONS
469	Numerical Studies of Sessile Droplet Shape with Moving Contact Lines. Micro and Nanosystems, 2011, 3, 56-64.	0.6	4
470	Air-Breathing Membraneless Laminar Flow Fuel Cell With Flow-Through Anode. , 2011, , .		4
471	Sample loading and retrieval by centrifugation in a closed-loop PCR microchip. Mikrochimica Acta, 2012, 176, 445-453.	5.0	4
472	Numerical study of thermocoalescence of microdroplets in a microfluidic chamber. Physics of Fluids, 2013, 25, .	4.0	4
473	Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device. Applied Physics Letters, 2014, 105, .	3.3	4
474	Asymmetric heat transfer in liquid–liquid segmented flow in microchannels. International Journal of Heat and Mass Transfer, 2014, 77, 385-394.	4.8	4
475	Electrochemical Detection of FAM134B Mutations in Oesophageal Cancer Based on DNAâ€Gold Affinity Interactions. Electroanalysis, 2017, 29, 1359-1367.	2.9	4
476	Pressure-driven filling of liquid metal in closed-end microchannels. Physical Review E, 2018, 98, .	2.1	4
477	Dependence of offset voltage in AlGaN/GaN van der Pauw devices under mechanical strain. Materials Letters, 2019, 244, 66-69.	2.6	4
478	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie, 2021, 133, 9746-9751.	2.0	4
479	AlGaN/GaN 2-D Electron Gas for Highly Sensitive and High-Temperature Current Sensing. IEEE Transactions on Electron Devices, 2021, 68, 1495-1500.	3.0	4
480	Sessile Liquid Marbles with Embedded Hydrogels as Bioreactors for Threeâ€Dimensional Cell Culture. Advanced Biology, 2021, 5, 2000108.	2.5	4
481	Research Highlight Soft Microsystems - A Paradigm Shift in Engineering Small Systems. Micro and Nanosystems, 2015, 7, 2-3.	0.6	4
482	Bioaffinity Mass Spectrometry Screening using Droplet-Based Microfluidics. Micro and Nanosystems, 2015, 7, 74-79.	0.6	4
483	Thermal and mechanical stabilities of Core-shell microparticles containing a liquid core. Journal of Molecular Liquids, 2021, 344, 117726.	4.9	4
484	Investigation of liquid marble shell using Xâ€ray: shell thickness and effective surface tension. ChemNanoMat, 2022, 8, .	2.8	4
485	Enhanced Blood Plasma Extraction Utilising Viscoelastic Effects in a Serpentine Microchannel. Biosensors, 2022, 12, 120.	4.7	4
486	Picomolar detection of carbohydrate-lectin interactions on piezoelectrically printed microcantilever array. Biosensors and Bioelectronics, 2022, 205, 114088.	10.1	4

#	Article	IF	CITATIONS
487	Model-based feedback control for on-demand droplet dispensing system with precise real-time phase imaging. Sensors and Actuators B: Chemical, 2022, 365, 131936.	7.8	4
488	Microfluidic Devices on Printed Circuit Board. Microsystems, 2002, , 185-217.	0.3	3
489	DEVELOPMENT OF 3-COMPONENT FORCE-MOMENT BALANCE FOR LOW SPEED WATER TUNNEL. Modern Physics Letters B, 2005, 19, 1575-1578.	1.9	3
490	Theoretical investigation of two-fluid electroosmotic flow in microchannels. Journal of Physics: Conference Series, 2006, 34, 470-474.	0.4	3
491	A Silicon/glass-based microfluidic device for invetigation of Lagrangian velocity field in microdroplets. Journal of Physics: Conference Series, 2006, 34, 130-135.	0.4	3
492	A Novel Circular Ferro-Fluid Driven Flow-Through Microchip for Rapid DNA Amplification. , 2007, , .		3
493	Optical alignment of a cylindrical object. Journal of Optics, 2009, 11, 034008.	1.5	3
494	Measurement of buried undercut structures in microfluidic devices by laser fluorescent confocal microscopy. Applied Optics, 2009, 48, 6432.	2.1	3
495	Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature. Optical Materials, 2011, 33, 1338-1341.	3.6	3
496	Active micromixers. , 2012, , 239-294.		3
497	Fundamentals of mass transport in the microscale. , 2012, , 9-72.		3
498	Ab Initio DFT Simulations of Nanostructures. , 2012, , 11-17.		3
499	Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis. International Journal of Heat and Mass Transfer, 2012, 55, 2647-2655.	4.8	3
500	High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Focusing and Membrane. Journal of Heat Transfer, 2017, 139, .	2.1	3
501	Ultra-Sensitive OPTO-Piezoresistive Sensors Utilising 3C-SiC/Si Heterostructures. , 2019, , .		3
502	Magnetofluidic spreading in circular chambers under a uniform magnetic field. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	3
503	Engineering Micropatterned Surfaces for Controlling the Evaporation Process of Sessile Droplets. Technologies, 2020, 8, 29.	5.1	3

504 Optoelectronic Enhancement for Piezoresistive Pressure Sensor., 2020,,.

#	Article	IF	CITATIONS
505	Flexible and Wearable Flow Sensor Using Spinnable Carbon Nanotube Nanofilm for Respiration Monitoring. , 2020, , .		3
506	Loop-Mediated Isothermal Amplification in a Core-Shell Bead Assay for the Detection of Tyrosine Kinase AXL Overexpression. Micromachines, 2021, 12, 905.	2.9	3
507	Desirable Features for High-Temperature SiC Sensors. SpringerBriefs in Applied Sciences and Technology, 2018, , 43-53.	0.4	3
508	Noninvasive refilling of liquid marbles with water for microfluidic applications. Applied Physics Letters, 2022, 120, .	3.3	3
509	Light-Harvesting Self-Powered Monolithic-Structure Temperature Sensing Based on 3C-SiC/Si Heterostructure. ACS Applied Materials & Interfaces, 2022, 14, 22593-22600.	8.0	3
510	Stretchable, Skin-Breathable, and Ultrasensitive Respiration Sensor Using Graphite on Paper With Smart Structures. IEEE Sensors Journal, 2022, 22, 16804-16810.	4.7	3
511	A novel measurement concept for wind speed and wind direction based on a temperature sensor array. , 0, , .		2
512	Microfluidic chip with optical sensor for rapid detection of nerve agent Sarin in water samples. , 2006, , .		2
513	Active control for droplet-based microfluidics. , 2006, 6416, 113.		2
514	Mixing Flow of Viscoelastic Fluids in a Microchannel. , 2007, , 658-661.		2
515	Characterization of Temperature Dependence of Interfacial Tension and Viscosity of Nanofluid. , 2008, , .		2
516	Capillary Filling in Nanochannels. , 2009, , .		2
517	Integration of PDMS and PMMA for Batch Fabrication of Microfluidic Devices. IFMBE Proceedings, 2010, , 1177-1180.	0.3	2
518	Laser beam propagation in a flow aligned nematic liquid crystal: analysis on liquid/light interactions. Optical Engineering, 2011, 50, 050501.	1.0	2
519	AFM, Tapping Mode. , 2012, , 99-99.		2
520	Micromixers based on chaotic advection. , 2012, , 195-238.		2
521	Multiscale and Multimaterial Fabrication: The Challenge Ahead. Micromachines, 2016, 7, 178.	2.9	2
522	Fabrication of a sensitive pressure sensor using carbon nanotube micro-yarns. , 2017, , .		2

522 Fabrication of a sensitive pressure sensor using carbon nanotube micro-yarns. , 2017, , .

#	Article	IF	CITATIONS
523	Magnetically-Actuated Mixing and Merging of Acid-Base Micro-Droplets on Open Surfaces: Preliminary Study. Sensors, 2018, 18, 1767.	3.8	2
524	Automatic Live and Dead Cell Classification via Hyperspectral Imaging. , 2019, , .		2
525	Investigation of heat transfer in a microchannel with same heat capacity rate. Heat and Mass Transfer, 2019, 55, 899-909.	2.1	2
526	Wet oxidation of 3C-SiC on Si for MEMS processing and use in harsh environments: Effects of the film thicknesses, crystalline orientations, and growth temperatures. Sensors and Actuators A: Physical, 2021, 317, 112474.	4.1	2
527	Investigation of Thermal Flow Sensor Based on Laser Induced Fluorescence Technique. Micro and Nanosystems, 2011, 3, 48-55.	0.6	2
528	Introduction to SiC and Thermoelectrical Properties. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-9.	0.4	2
529	Modelling Sessile Droplet Profile Using Asymmetrical Ellipses. Processes, 2021, 9, 2081.	2.8	2
530	Magnetic cell separation. , 2022, , 193-225.		2
531	A new insight into a thermoplastic microfluidic device aimed at improvement of oxygenation process and avoidance of shear stress during cell culture. Biomedical Microdevices, 2022, 24, 15.	2.8	2
532	Thermal-piezoresistive pumping on double SiC layer resonator for effective quality factor tuning. Sensors and Actuators A: Physical, 2022, 343, 113678.	4.1	2
533	<title>Hybrid microdosing system</title> . , 1998, 3514, 415.		1
534	POLYMERIC STACK-ASSEMBLED MICROPUMP WITH SU-8 CHECK VALVES. International Journal of Computational Engineering Science, 2003, 04, 249-252.	0.1	1
535	Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modeling and experiment. , 2005, 6036, 141.		1
536	Magnetic actuation for microfluidics based on ferrofluid droplets. , 2006, 6414, 202.		1
537	Investigation of Temperature-Dependent Droplet Formation of Nanofluids in Microfluidic T-Junction. , 2008, , .		1
538	Fabrication Technologies. , 2008, , 79-134.		1
539	Two-Fluid Electroosmotic Flow in Microchannels. , 2008, , .		1
540	Thermal Control for Droplet-Based Microfluidics. , 2008, , .		1

#	Article	IF	CITATIONS
541	Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. Journal of Micromechanics and Microengineering, 2010, 20, 039801-039801.	2.6	1
542	Kinematics of Surface Acoustic Wave Driven Liquid Droplets. , 2011, , .		1
543	Characterization techniques. , 2012, , 295-320.		1
544	Micromixers based on molecular diffusion. , 2012, , 163-194.		1
545	AC Electroosmosis: Basics and Lab-on-a-Chip Applications. , 2012, , 25-30.		1
546	Micromachines Beyond Silicon-Based Technologies: A Letter from the New Editor-in-Chief. Micromachines, 2016, 7, 44.	2.9	1
547	Design and fabrication of electrothermal SiC nanoresonators for high-resolution nanoparticle sensing. , 2016, , .		1
548	Sensitive and fast response graphite pressure sensor fabricated by a solvent-free approach. , 2017, , .		1
549	Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors. SpringerBriefs in Applied Sciences and Technology, 2018, , .	0.4	1
550	Utilizing large hall offset voltage for conversion free 4H-SiC strain sensor. , 2018, , .		1
551	Physical Sensors: Thermal Sensors. , 2021, , .		1
552	Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads. Cancers, 2021, 13, 3787.	3.7	1
553	Carbon Nanotube Four-Terminal Devices for Pressure Sensing Applications. Smart Innovation, Systems and Technologies, 2019, , 199-207.	0.6	1
554	Polymeric Labs on a Chip for Sustainable Development. , 2009, , .		1
555	Mass Transport in Nanochannels. Micro and Nanosystems, 2010, 2, 286-297.	0.6	1
556	A Numerical Investigation of Thermally Mediated Droplet Formation in a T-Junction. , 2009, , .		1
557	Research Highlight: Micro- and Nanosystems Meet Biology: Artificial Life on a Chip. Micro and Nanosystems, 2014, 6, 1-2.	0.6	1
558	Silicon Micro-/Nanomachining and Applications. , 2018, , 225-261.		1

#	Article	IF	CITATIONS
559	Ferrofluidic plug flow heat transfer enhancement. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 291-302.	0.2	1
560	Fundamentals of Thermoelectrical Effect in SiC. SpringerBriefs in Applied Sciences and Technology, 2018, , 11-41.	0.4	1
561	Editorial for the Special Issue of 10th Anniversary of Micromachines. Micromachines, 2021, 12, 9.	2.9	1
562	Seebeck coefficient in SiC/Si heterojunction for self-powered thermal sensor. , 2021, , .		1
563	Design and fabrication of paper-based stretchable sensor for respiration monitoring. , 2021, , .		1
564	Plasma Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie, 0, , .	2.0	1
565	Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Archives of Computational Methods in Engineering, 2022, 29, 3021-3039.	10.2	1
566	lsotypic analysis of anti-p53 serum autoantibodies and p53 protein tissue phenotypes in colorectal cancer. Human Pathology, 2022, , .	2.0	1
567	A microfluidic sensor for dynamic surface tension measurement. , 2005, , .		0
568	Theoretical and experimental investigation of thermocapillary actuation for microplugs. , 2006, , .		0
569	Measurement of Transient Electrokinetic Flow in Microchannels Using Micro-PIV Technique. , 2006, , 223.		0
570	Micromixers Based on Molecular Diffusion. , 2008, , 135-161.		0
571	Liquid–Liquid Stratified Flow in Microchannels. , 2008, , 1022-1031.		0
572	Micromixers Based on Chaotic Advection. , 2008, , 163-206.		0
573	Fabrication of Nanochannels in Silicon and Polymers. , 2008, , .		0
574	Programmable Manipulation of a Droplet in a Planar Microchannel. , 2008, , .		0
575	Fundamentals of Mass Transport in the Micro Scale. , 2008, , 9-77.		0
576	Modeling and Characterization of Micro Optofluidic Lenses With Short Focal Length. , 2009, , .		0

#	Article	IF	CITATIONS
577	Fabrication of Nanochannels on Polymer Thin Film. , 2009, , .		0
578	Experimental and Numerical Investigation of Droplet Transport in a Diffuser/Nozzle Structure. , 2009, , .		0
579	Fabrication and Experimental Characterization of Nanochannels. , 2009, , .		0
580	Optofluidic variable optical attenuator. , 2010, , .		0
581	Magnetically Mediated Formation of Ferrofluid Emulsion. , 2011, , .		0
582	Analytical model of plug flow in microchannels. , 2011, , .		0
583	A Micro Optofluidic System for Counting and Size Measurement of Particles. , 2011, , .		0
584	Tunable multi-functional optofluidic biconcave lens. , 2011, , .		0
585	Electrohydrodynamic and Shear-Stress Interfacial Instability of Two Streaming Viscous Liquid Inside a Microchannel for Normal Electric Fields. , 2011, , .		0
586	Active Micromixers Based on Polarization Instability and Acoustic Streaming. , 2011, , .		0
587	Active Control of Droplet Formation Process in Microfluidics. , 2012, , 51-75.		0
588	Application of micromixers. , 2012, , 321-342.		0
589	Computational transport processes for micromixers. , 2012, , 73-112.		0
590	AFM. , 2012, , 83-83.		0
591	Transport of Magnetic Particles Under a Uniform Magnetic Field in Microchannels. , 2013, , .		Ο
592	Ferrofluids in Microchannels. , 2014, , 1-8.		0
593	Flow Bifurcation in Microchannel. , 2014, , 1-13.		0
594	High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Microfluidics and Membrane. , 2016, , .		0

#	Article	IF	CITATIONS
595	Three-dimensional particle focusing under viscoelastic flow based on dean-flow-coupled elasto-inertial effects. , 2016, , .		0
596	Ultra-thin LPCVD silicon carbide membrane: A promising platform for bio-cell culturing. , 2018, , .		0
597	2020 Micromachines Young Investigator Award: Announcement and Interview with the Winner. Micromachines, 2021, 12, 48.	2.9	0
598	Particle Transport In Microchannels. , 2006, , .		0
599	Electrophoretic Motion of Particles in a Microsystem. , 2006, , .		0
600	Thermal Fluid Interaction in a Periodically Heated Capillary. , 2007, , .		0
601	A Procedure for Encapsulation in Microchannel. , 2007, , .		0
602	Characterization Techniques. , 2008, , 267-292.		0
603	Improved Capillary Electrophoresis Separation Using a Capillary Bundle. , 2008, , .		0
604	Thermocapillary Actuation and Cycling of Liquid Plugs. , 2008, , .		0
605	Sample Flow Switching Technique Based on Combined Effect of Hydrodynamic and Electroosmosis. , 2009, , .		0
606	Semi-Analytical Model of Mixed Electroosmotic/Pressure Driven Two Immiscible Fluids with Curved Interface. Micro and Nanosystems, 2011, 3, 296-310.	0.6	0
607	Droplet Microreactor. , 2014, , 1-7.		0
608	Transport of Droplets by Thermal Capillarity. , 2014, , 1-10.		0
609	Mercuric Ion: Chemistry Aspect of Optical Detection and Sensing. , 2014, , 1-20.		0
610	10.1063/1.4897343.1., 2014, , .		0
611	Low-Cost Low-Maintenance Paper-Based Sensor for the Detection of Ebola Virus. Micro and Nanosystems, 2014, 6, 69-69.	0.6	0
612	Applications of Nanofluidics. , 2015, , 1-8.		0

#	Article	IF	CITATIONS
613	Impact of Design and Process on Performance of SiC Thermal Devices. SpringerBriefs in Applied Sciences and Technology, 2018, , 75-83.	0.4	0
614	Fabrication of SiC MEMS Sensors. SpringerBriefs in Applied Sciences and Technology, 2018, , 55-74.	0.4	0
615	Applications of Thermoelectrical Effect in SiC. SpringerBriefs in Applied Sciences and Technology, 2018, , 85-106.	0.4	0
616	Future Prospects of SiC Thermoelectrical Sensing Devices. SpringerBriefs in Applied Sciences and Technology, 2018, , 107-115.	0.4	0
617	10.1063/1.5079438.1.,2019,,.		0
618	Technological Development – Droplet as a Tool. RSC Soft Matter, 2020, , 45-88.	0.4	0
619	Ultrasensitive strain sensor enhanced by Bonded Light Emitting Diodes. , 2021, , .		0
620	Micromachines: 5000th Publications Milestone. Micromachines, 2021, 12, 1573.	2.9	0
621	Giant Piezotronic Effect by Photoexcitation–Electronic Coupling in a p-GaN/AlGaN/GaN Heterojunction. ACS Applied Electronic Materials, 2022, 4, 2648-2655.	4.3	0