Bingcai Pan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8916936/bingcai-pan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 266 15,030 113 h-index g-index citations papers 280 18,423 7.16 10.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
266	Revisiting the Heterogeneous Peroxymonosulfate Activation by MoS2: a Surface MoBeroxymonosulfate Complex as the Major Reactive Species. <i>ACS ES&T Water</i> , 2022 , 2, 376-384		2
265	Highly efficient removal of arsenite from water by using renewable sub-5hm Zr-Mn binary oxides confined inside gel-type ion exchanger. <i>Chemical Engineering Journal</i> , 2022 , 431, 134082	14.7	0
264	Construction of model platforms to probe the confinement effect of nanocomposite-enabled water treatment. <i>Chemical Engineering Journal Advances</i> , 2022 , 9, 100229	3.6	2
263	Metal-free biomass with abundant carbonyl groups as efficient catalyst for the activation of peroxymonosulfate and degradation of sulfamethoxazole. <i>Chemical Engineering Journal</i> , 2022 , 430, 133	2787	2
262	Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	1
261	Selective removal of organic phosphonates via coupling hyper-cross-linked resin with nanoconfined hydrated oxides. <i>Chemical Engineering Journal</i> , 2022 , 428, 132620	14.7	1
260	Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127158	12.8	6
259	MnO as an Electron Shuttle between Peroxymonosulfate and Organic Pollutants: The Dominant Role of Surface Reactive Mn(IV) Species <i>Environmental Science & Environmental Sci</i>	10.3	4
258	Catalytic Aerobic Oxidation of P(I)/P(III) into P(V) over PdNi10 as a Low-Cost Alternative Catalyst Rivaling Pd. <i>Chemical Engineering Journal</i> , 2022 , 136892	14.7	
257	Self-Enhanced Selective Oxidation of Phosphonate into Phosphate by Cu(II)/HO: Performance, Mechanism, and Validation <i>Environmental Science & Environmental Science & Enviro</i>	10.3	1
256	In-situ forming Sub-2 nm hydrous iron oxide particles in MOFs for deep-treatment and high anti-interference in arsenic removal. <i>Chemical Engineering Journal</i> , 2021 , 431, 133813	14.7	0
255	Toward Selective Oxidation of Contaminants in Aqueous Systems. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 14494-14514	10.3	12
254	Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction. <i>Nano Research</i> , 2021 , 14, 2383	10	13
253	Structural Evolution of Lanthanum Hydroxides during Long-Term Phosphate Mitigation: Effect of Nanoconfinement. <i>Environmental Science & Environmental </i>	10.3	18
252	Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)-Peroxymonosulfate Complex. <i>Environmental Science & Description (Control Science & Control Science & Contro</i>	10.3	29
251	Validation of pilot-scale phosphate polishing removal from surface water by lanthanum-based polymeric nanocomposite. <i>Chemical Engineering Journal</i> , 2021 , 412, 128630	14.7	5
250	Trace Co coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation. <i>Journal of Hazardous Materials</i> , 2021 , 409, 124920	12.8	17

(2021-2021)

249	The Fenton Reaction in Water Assisted by Picolinic Acid: Accelerated Iron Cycling and Co-generation of a Selective Fe-Based Oxidant. <i>Environmental Science & Environmental Sc</i>	3 12	1
248	The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119943	25	;
247	Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): Mechanism and kinetic study. <i>Chemical Engineering Journal</i> , 2021 , 414, 128812	15	;
246	Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. <i>Nature Communications</i> , 2021 , 12, 3508	33	
245	N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants. <i>Chemical Engineering Journal</i> , 14.7 2021 , 403, 126395	28	3
244	Ferroelectric membrane for water purification with arsenic as model pollutant. <i>Chemical Engineering Journal</i> , 2021 , 403, 126426	2	
243	Facet-dependent phosphate adsorptive reactivity by lanthanum hydroxides of different crystal structure: Role of surface hydroxyl groups. <i>Applied Surface Science</i> , 2021 , 538, 147910	7	
242	Utilization of gel-type polystyrene host for immobilization of nano-sized hydrated zirconium oxides: A new strategy for enhanced phosphate removal. <i>Chemosphere</i> , 2021 , 263, 127938	17	7
241	Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis. <i>Water Research</i> , 2021 , 188, 116484	21	-
240	Enhancing the performance of Fenton-like oxidation by a dual-layer membrane: A sequential interception-oxidation process. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123766	10)
239	Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite. <i>Water Research</i> , 2021 , 189, 116673	3	
238	Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. <i>Water Research</i> , 2021 , 189, 116599	24	1
237	Tributylhexadecylphosphonium Modification Strategy to Construct Gold Nanoprobes for the Detection of Aqueous Cr(III)-Organic Complexes. <i>Analytical Chemistry</i> , 2021 , 93, 1811-1817	5	
236	Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. <i>Environmental Science & Environmental Sci</i>	52	1
235	Enhanced production of methane in anaerobic water treatment as mediated by the immobilized fungi. <i>Water Research</i> , 2021 , 190, 116761	6	
234	Unravelling molecular transformation of dissolved effluent organic matter in UV/HO, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis. <i>Water Research</i> , 2021 , 199, 1171585	16	<u> </u>
233	Enhanced removal of arsenic from water by using sub-10 hm hydrated zirconium oxides confined inside gel-type anion exchanger. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125505	10)
232	Dual-Functionalized MIL-101(Cr) for the Selective Enrichment and Ultrasensitive Analysis of Trace Per- and Poly-fluoroalkyl Substances. <i>Analytical Chemistry</i> , 2021 , 93, 11116-11122	6	

231	Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. <i>Langmuir</i> , 2021 , 37, 9793-9801	4	2
230	Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. <i>Water Research</i> , 2021 , 202, 117397	12.5	12
229	Selective interfacial oxidation of organic pollutants in Fenton-like system mediated by Fe(III)-adsorbed carbon nanotubes. <i>Applied Catalysis B: Environmental</i> , 2021 , 292, 120193	21.8	20
228	Enhanced water decontamination from methylated arsenic by utilizing ultra-small hydrated zirconium oxides encapsulated inside gel-type anion exchanger. <i>Chemical Engineering Journal</i> , 2021 , 430, 132641	14.7	О
227	Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest Diketone. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	4
226	Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation. <i>Applied Catalysis B: Environmental</i> , 2021 , 292, 120155	21.8	38
225	Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment. <i>Applied Catalysis B: Environmental</i> , 2021 , 295, 120282	21.8	9
224	Membrane cleaning strategy via in situ oscillation driven by piezoelectricity. <i>Journal of Membrane Science</i> , 2021 , 638, 119722	9.6	2
223	Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120537	21.8	12
222	Scenario oriented strategies for phosphorus management by using environmental nanotechnology. <i>Current Opinion in Chemical Engineering</i> , 2021 , 34, 100720	5.4	
222		5·4 2.9	1
	Current Opinion in Chemical Engineering, 2021, 34, 100720 Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and		1 31
221	Current Opinion in Chemical Engineering, 2021, 34, 100720 Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. <i>Ecotoxicology</i> , 2021, 30, 1446-1453 Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable	2.9	
221	Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. <i>Ecotoxicology</i> , 2021 , 30, 1446-1453 Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater h perspective. <i>Environmental Science: Nano</i> , 2020 , 7, 2178-2194 Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. <i>Environmental</i>	2.9 7.1	31
221 220 219	Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. <i>Ecotoxicology</i> , 2021 , 30, 1446-1453 Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater he perspective. <i>Environmental Science: Nano</i> , 2020 , 7, 2178-2194 Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. <i>Environmental Science & Description of the Science </i>	2.9 7.1 10.3	31 80
221220219218	Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. <i>Ecotoxicology</i> , 2021 , 30, 1446-1453 Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater he perspective. <i>Environmental Science: Nano</i> , 2020 , 7, 2178-2194 Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. <i>Environmental Science & Description of Mathematical Science</i>	2.9 7.1 10.3	31 80 44
221220219218217	Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. <i>Ecotoxicology</i> , 2021 , 30, 1446-1453 Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater he perspective. <i>Environmental Science: Nano</i> , 2020 , 7, 2178-2194 Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. <i>Environmental Science & Amp; Technology</i> , 2020 , 54, 8509-8526 Enhancing the Fenton-like Catalytic Activity of nFeO by MIL-53(Cu) Support: A Mechanistic Investigation. <i>Environmental Science & Descriptions</i> , 2020 , 54, 5258-5267 Mesoporous polyacrylonitrile membrane with ultrahigh loading of well-dispersed Fe2O3 nanoparticles: A powerful phosphate scavenger Enabling inhibition of microbial regrowth in Treated Water. <i>Journal of Membrane Science</i> , 2020 , 603, 118048 Deep removal of arsenite from water with no need for pre-oxidation or in-line oxidation. <i>Chemical</i>	2.9 7.1 10.3 10.3	31 80 44

213	Metastable Zirconium Phosphate under Nanoconfinement with Superior Adsorption Capability for Water Treatment. <i>Advanced Functional Materials</i> , 2020 , 30, 1909014	15.6	27
212	Porous nanocomposites for water treatment: past, present, and future 2020 , 479-503		1
211	Molecular identification guided process design for advanced treatment of electroless nickel plating effluent. <i>Water Research</i> , 2020 , 168, 115211	12.5	15
210	Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater. <i>Chemical Engineering Journal</i> , 2020 , 384, 123232	14.7	32
209	Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions. <i>Chemical Engineering Journal</i> , 2020 , 391, 123592	14.7	9
208	Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. <i>Water Research</i> , 2020 , 184, 116173	12.5	15
207	Soft Particles Enable Fast and Selective Water Transport through Graphene Oxide Membranes. <i>Nano Letters</i> , 2020 , 20, 7327-7332	11.5	19
206	New insights into the fractionation of effluent organic matter on diagnosis of key composition affecting advanced phosphate removal by Zr-based nanocomposite. <i>Water Research</i> , 2020 , 186, 116299	12.5	5
205	Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	164
204	Removal of model dyes on charged UF membranes: Experiment and simulation. <i>Chemosphere</i> , 2020 , 240, 124940	8.4	17
203	Integrating cationic metal-organic frameworks with ultrafiltration membrane for selective removal of perchlorate from Water. <i>Journal of Hazardous Materials</i> , 2020 , 381, 120961	12.8	18
202	Highly efficient photodegradation of various organic pollutants in water: Rational structural design of photocatalyst via thiol-ene click reaction. <i>Chemical Engineering Journal</i> , 2020 , 381, 122631	14.7	12
201	FeS2/H2O2 mediated water decontamination from p-arsanilic acid via coupling oxidation, adsorption and coagulation: Performance and mechanism. <i>Chemical Engineering Journal</i> , 2020 , 381, 122	667 7	21
200	Enhanced Fenton-like Oxidation of As(III) over Ce-Ti Binary Oxide: A New Strategy to Tune Catalytic Activity via Balancing Bimolecular Adsorption Energies. <i>Environmental Science & Environmental Sci</i>	10.3	15
199	Molecular-scale investigation of fluoride sorption mechanism by nanosized hydroxyapatite using F solid-state NMR spectroscopy. <i>Journal of Colloid and Interface Science</i> , 2019 , 557, 357-366	9.3	12
198	Non-radical pathway dominated catalytic oxidation of As(III) with stoichiometric HO over nanoceria. <i>Environment International</i> , 2019 , 124, 393-399	12.9	21
197	Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation. <i>Chemical Engineering Journal</i> , 2019 , 375, 122009	14.7	39
196	Multifunctional Piezoelectric Heterostructure of BaTiO@Graphene: Decomplexation of Cu-EDTA and Recovery of Cu. <i>Environmental Science & Environmental </i>	10.3	32

195	Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species. <i>Science of the Total Environment</i> , 2019 , 683, 609-616	10.2	17
194	Analysis of trace phosphonates in authentic water samples by pre-methylation and LC-Orbitrap MS/MS. <i>Water Research</i> , 2019 , 161, 78-88	12.5	23
193	Bacterial cellulose derived paper-like purifier with multifunctionality for water decontamination. <i>Chemical Engineering Journal</i> , 2019 , 371, 730-737	14.7	32
192	Development of Fe-doped g-CN/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway. <i>Science of the Total Environment</i> , 2019 , 675, 62-72	10.2	62
191	Effect of 3-D distribution of ZVI nanoparticles confined in polymeric anion exchanger on EDTA-chelated Cu(II) removal. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 10013-10022	5.1	5
190	Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6659-6664	11.5	188
189	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38
188	Nanoconfined Hydrated Zirconium Oxide for Selective Removal of Cu(II)-Carboxyl Complexes from High-Salinity Water via Ternary Complex Formation. <i>Environmental Science & Environmental Science & Envi</i>	10.3	36
187	Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity. <i>Water Research</i> , 2019 , 157, 472-482	12.5	61
186	Dual-functional millisphere of anion-exchanger-supported nanoceria for synergistic As(III) removal with stoichiometric H2O2: Catalytic oxidation and sorption. <i>Chemical Engineering Journal</i> , 2019 , 360, 982-989	14.7	23
185	Validation of a combined Fe(III)/UV/NaOH process for efficient removal of carboxyl complexed Ni from synthetic and authentic effluents. <i>Chemosphere</i> , 2019 , 234, 917-924	8.4	11
184	Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. <i>Water Research</i> , 2019 , 164, 114888	12.5	47
183	Activation of zero-valent iron through ball-milling synthesis of hybrid Fe/FeO/FeCl microcomposite for enhanced nitrobenzene reduction. <i>Journal of Hazardous Materials</i> , 2019 , 368, 698-704	12.8	26
182	MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. <i>Journal of Hazardous Materials</i> , 2019 , 365, 312-321	12.8	77
181	Unexpected Favorable Role of Ca in Phosphate Removal by Using Nanosized Ferric Oxides Confined in Porous Polystyrene Beads. <i>Environmental Science & Dischard Rechnology</i> , 2019 , 53, 365-372	10.3	50
180	Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process. <i>Water Research</i> , 2019 , 153, 21-28	12.5	29
179	Autocatalytic Decomplexation of Cu(II)-EDTA and Simultaneous Removal of Aqueous Cu(II) by UV/Chlorine. <i>Environmental Science & Environmental Science </i>	10.3	39
178	Polymer and Polymer-Based Nanocomposite Adsorbents for Water Treatment. <i>Springer Series on Polymer and Composite Materials</i> , 2019 , 93-119	0.9	5

(2018-2019)

177	Photochemical activation of seemingly inert SO in specific water environments. <i>Chemosphere</i> , 2019 , 214, 399-407	8.4	4
176	Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. <i>Water Research</i> , 2018 , 137, 37-46	12.5	128
175	Enhanced Photochemical/Electrochemical Performance of Graphene Benefited from Morphological Change as Substrate of Typical Composites. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800035	4.6	2
174	Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions. <i>Environmental Science & Environmental Science & Environm</i>	10.3	124
173	Fe(III)-Doped g-CN Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species. <i>Environmental Science & Environmental Science & Environmen</i>	2203	365
172	Enhanced Nitrobenzene reduction by zero valent iron pretreated with HO/HCl. <i>Chemosphere</i> , 2018 , 197, 494-501	8.4	17
171	Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using HO/HCl: Effect of solution chemistry and mechanism investigation. <i>Water Research</i> , 2018 , 133, 173-181	12.5	26
170	Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. <i>Journal of Hazardous Materials</i> , 2018 , 347, 160-167	12.8	39
169	Mesoporous Ce-Ti-Zr ternary oxide millispheres for efficient catalytic ozonation in bubble column. <i>Chemical Engineering Journal</i> , 2018 , 338, 261-270	14.7	35
168	Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. <i>Chemosphere</i> , 2018 , 191, 971-978	8.4	19
167	Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II). <i>Chemosphere</i> , 2018 , 193, 1235-1242	8.4	37
166	Enhanced fluoride removal by La-doped Li/Al layered double hydroxides. <i>Journal of Colloid and Interface Science</i> , 2018 , 509, 353-359	9.3	74
165	Enhanced Defluoridation Using Novel Millisphere Nanocomposite of La-Doped Li-Al Layered Double Hydroxides Supported by Polymeric Anion Exchanger. <i>Scientific Reports</i> , 2018 , 8, 11741	4.9	20
164	A novel combined process for efficient removal of Se(VI) from sulfate-rich water: Sulfite/UV/Fe(III) coagulation. <i>Chemosphere</i> , 2018 , 211, 867-874	8.4	14
163	Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: Batch and column tests. <i>Chemical Engineering Journal</i> , 2018 , 354, 445-453	14.7	29
162	Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/HO: Performance, Mechanism, and Validation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	59
161	Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. <i>Water Research</i> , 2018 , 143, 87-98	12.5	92

159	Improving reductive performance of zero valent iron by H2O2/HCl pretreatment: A case study on nitrate reduction. <i>Chemical Engineering Journal</i> , 2018 , 334, 2255-2263	14.7	37
158	Enhanced removal of selenate from mining effluent by HO/HCl-pretreated zero-valent iron. <i>Water Science and Technology</i> , 2018 , 78, 2404-2413	2.2	6
157	Peroxymonosulfate activation by iron(III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex. <i>Water Research</i> , 2018 , 147, 233-241	12.5	93
156	A human cell panel for evaluating safe application of nano-ZrO/polymer composite in water remediation. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 166, 474-481	7	5
155	Adsorption and Reduction of Cr(VI) Together with Cr(III) Sequestration by Polyaniline Confined in Pores of Polystyrene Beads. <i>Environmental Science & Environmental Science &</i>	10.3	100
154	Enhanced debromination of 4-bromophenol by the UV/sulfite process: Efficiency and mechanism. <i>Journal of Environmental Sciences</i> , 2017 , 54, 231-238	6.4	31
153	Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite. <i>Chemosphere</i> , 2017 , 171, 126-133	8.4	42
152	Iron oxide nanoparticles confined in mesoporous silicates for arsenic sequestration: effect of the host pore structure. <i>Environmental Science: Nano</i> , 2017 , 4, 679-688	7.1	24
151	Highly efficient and environmentally benign As(III) pre-oxidation in water by using a solid redox polymer. <i>Chemosphere</i> , 2017 , 175, 300-306	8.4	10
150	Simultaneous Oxidation and Sequestration of As(III) from Water by Using Redox Polymer-Based Fe(III) Oxide Nanocomposite. <i>Environmental Science & Environmental Science & Envi</i>	10.3	91
149	Efficient Removal of Trace Se(VI) by Millimeter-Sized Nanocomposite of Zerovalent Iron Confined in Polymeric Anion Exchanger. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 5309-5317	3.9	17
148	Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration. <i>Environmental Science & Environmental Science & Environme</i>	10.3	60
147	Effects of brining on the corrosion of ZVI and its subsequent As(III/V) and Se(IV/VI) removal from water. <i>Chemosphere</i> , 2017 , 170, 251-259	8.4	25
146	Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water. <i>Environmental Science & Environmental Sc</i>	10.3	50
145	Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism. <i>Water Research</i> , 2017 , 126, 172-178	12.5	75
144	Highly Efficient Water Decontamination by Using Sub-10 nm FeOOH Confined within Millimeter-Sized Mesoporous Polystyrene Beads. <i>Environmental Science & amp; Technology</i> , 2017 , 51, 9210-9218	10.3	55
143	Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction. <i>Water Research</i> , 2017 , 124, 331-340	12.5	20
142	A new strategy to address the challenges of nanoparticles in practical water treatment: mesoporous nanocomposite beads via flash freezing. <i>Nanoscale</i> , 2017 , 9, 19154-19161	7.7	24

(2015-2017)

141	Advances in Sulfidation of Zerovalent Iron for Water Decontamination. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	145
140	Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions. <i>Environmental Science</i> & amp; Technology, 2017 , 51, 8597-8605	10.3	33
139	Decomplexation of Cu(II)-EDTA by UV/persulfate and UV/H2O2: Efficiency and mechanism. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 439-447	21.8	123
138	Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. <i>Journal of Hazardous Materials</i> , 2017 , 321, 290-298	12.8	61
137	One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. <i>Chemical Engineering Journal</i> , 2017 , 308, 791-797	14.7	158
136	Effects of organic acids of different molecular size on phosphate removal by HZO-201 nanocomposite. <i>Chemosphere</i> , 2017 , 166, 422-430	8.4	32
135	Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger. <i>Water Research</i> , 2016 , 102, 109-116	12.5	70
134	Enhanced HO production from ozonation activated by EDTA. <i>Chemical Engineering Journal</i> , 2016 , 288, 562-568	14.7	20
133	Arsenate Adsorption by Hydrous Ferric Oxide Nanoparticles Embedded in Cross-linked Anion Exchanger: Effect of the Host Pore Structure. <i>ACS Applied Materials & District Materials</i> (1998) 8, 3012-20	9.5	65
132	Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks. <i>Environmental Science & Environmental &</i>	10.3	199
131	Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. <i>Environmental Science & Environmental Science & Environm</i>	10.3	77
130	Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. <i>Particle and Fibre Toxicology</i> , 2016 , 13, 7	8.4	71
129	Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. <i>Journal of Hazardous Materials</i> , 2016 , 316, 169-77	12.8	73
128	Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways. <i>Chemical Engineering Journal</i> , 2016 , 299, 23-29	14.7	100
127	Nanomaterials-enabled water and wastewater treatment. <i>NanoImpact</i> , 2016 , 3-4, 22-39	5.6	217
126	Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with HO as corrosion accelerator. <i>Water Research</i> , 2016 , 106, 461-469	12.5	33
125	Surface chemistry of polymer-supported nano-hydrated ferric oxide for arsenic removal: effect of host pore structure. <i>Science China Chemistry</i> , 2015 , 58, 722-730	7.9	11
124	Ionic polymer-coated laccase with high activity and enhanced stability: application in the decolourisation of water containing AO7. <i>Scientific Reports</i> , 2015 , 5, 8253	4.9	17

123	Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst. <i>Science China Chemistry</i> , 2015 , 58, 1211-1219	7.9	4
122	Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?. <i>Chemosphere</i> , 2015 , 131, 55-62	8.4	13
121	Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10882-9	5.1	16
120	A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. <i>Water Research</i> , 2015 , 87, 378-84	12.5	86
119	Struvite-based phosphorus recovery from the concentrated bioeffluent by using HFO nanocomposite adsorption: Effect of solution chemistry. <i>Chemosphere</i> , 2015 , 141, 227-34	8.4	20
118	Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence. <i>RSC Advances</i> , 2015 , 5, 7363-7369	3.7	19
117	Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. <i>Journal of Hazardous Materials</i> , 2015 , 284, 35-42	12.8	125
116	Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide: Performance, characterization and implication. <i>Chemical Engineering Journal</i> , 2015 , 260, 616-622	14.7	23
115	Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: A case study of p-nitrophenol and phosphate. <i>Chemical Engineering Journal</i> , 2015 , 268, 399-407	14.7	47
114	Self-enhanced ozonation of benzoic acid at acidic pHs. Water Research, 2015, 73, 9-16	12.5	37
113	The photochemistry of carbon nanotubes and its impact on the photo-degradation of dye pollutants in aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2015 , 439, 98-104	9.3	13
112	A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments. <i>Journal of Environmental Sciences</i> , 2015 , 29, 1-10	6.4	10
111	Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV). <i>Water Research</i> , 2015 , 71, 274-81	12.5	155
110	Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. <i>Chemical Engineering Journal</i> , 2014 , 249, 111-120	14.7	57
109	Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 6729	-35 ¹	21
108	Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. <i>Science China Chemistry</i> , 2014 , 57, 763-771	7.9	22
107	A new polymer-based laccase for decolorization of AO7: long-term storage and mediator reuse. <i>Bioresource Technology</i> , 2014 , 164, 248-53	11	14
106	Effect of spatial distribution and aging of ZVI on the reactivity of resin IVI composites for arsenite removal. <i>Journal of Materials Science</i> , 2014 , 49, 7073-7079	4.3	10

(2013-2014)

105	Light-triggered reversible sorption of azo dyes on titanium xerogels with photo-switchable acetylacetonato anchors. <i>Chemical Communications</i> , 2014 , 50, 1086-8	5.8	13
104	Formation of lepidocrocite (FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. <i>RSC Advances</i> , 2014 , 4, 57377-57382	3.7	127
103	New strategy to enhance phosphate removal from water by hydrous manganese oxide. <i>Environmental Science & Environmental Scienc</i>	10.3	116
102	Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. <i>ACS Applied Materials & District Removals and Materials & District Removals and Materials & District Removals and Provided Materials & District Removals and Provided Removals and Provi</i>	9.5	122
101	Non-hydroxyl radical mediated photochemical processes for dye degradation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 7571-7	3.6	33
100	Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. <i>Water Research</i> , 2014 , 62, 220-8	12.5	64
99	Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen peroxide: dispersed versus resin-supported zero-valent iron. <i>Journal of Colloid and Interface Science</i> , 2014 , 428, 179-84	9.3	13
98	Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. <i>Journal of Environmental Sciences</i> , 2014 , 26, 307-14	6.4	72
97	Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. <i>Chemical Engineering Journal</i> , 2014 , 248, 290-296	14.7	72
96	Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal. <i>Journal of Hazardous Materials</i> , 2014 , 276, 295-301	12.8	61
95	Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 167-171	11	38
94	Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer. <i>Water Research</i> , 2013 , 47, 4730-8	12.5	56
93	Application potential of carbon nanotubes in water treatment: A review. <i>Journal of Environmental Sciences</i> , 2013 , 25, 1263-80	6.4	225
92	Preparation and performance evaluation of resin-derived carbon spheres for desulfurization of fuels. <i>Science China Chemistry</i> , 2013 , 56, 393-398	7.9	7
91	Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaledup study. <i>Frontiers of Environmental Science and Engineering</i> , 2013 , 7, 435-441	5.8	24
90	Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers: Effect of ionic strength and visible light irradiation. <i>Chemical Engineering Journal</i> , 2013 , 232, 167-173	14.7	29
89	A thermally stable mesoporous ZrO2IIeO2IIiO2 visible light photocatalyst. <i>Chemical Engineering Journal</i> , 2013 , 229, 118-125	14.7	34
88	Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. <i>Environmental Science & Environmental Sc</i>	10.3	162

87	Fabrication of a new hydrous Zr(IV) oxide-based nanocomposite for enhanced Pb(II) and Cd(II) removal from waters. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 12135-42	9.5	85
86	Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. <i>Water Research</i> , 2013 , 47, 6064-74	12.5	82
85	Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol. <i>Bioresource Technology</i> , 2013 , 142, 701-5	11	6
84	Selective removal of phosphate in waters using a novel of cation adsorbent: Zirconium phosphate (ZrP) behavior and mechanism. <i>Chemical Engineering Journal</i> , 2013 , 221, 315-321	14.7	67
83	Photodegradation of Acid Orange 7 in a UV/acetylacetone process. <i>Chemosphere</i> , 2013 , 93, 2877-82	8.4	28
82	Surface Chemistry of Nanosized Hydrated Ferric Oxide Encapsulated Inside Porous Polymer: Modeling and Experimental Studies. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6201-6209	3.8	31
81	Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	148
80	Mathematically modeling fixed-bed adsorption in aqueous systems. <i>Journal of Zhejiang University: Science A</i> , 2013 , 14, 155-176	2.1	202
79	Effect of sulfate on Cu(II) sorption to polymer-supported nano-iron oxides: behavior and XPS study. Journal of Colloid and Interface Science, 2012 , 366, 37-43	9.3	46
78	Simple fabrication of polymer-based Trametes versicolor laccase for decolorization of malachite green. <i>Bioresource Technology</i> , 2012 , 115, 16-20	11	17
77	Heavy metal removal from water/wastewater by nanosized metal oxides: a review. <i>Journal of Hazardous Materials</i> , 2012 , 211-212, 317-31	12.8	1476
76	The correlation between structural characteristics of activated carbons and their adsorption of organic solutes from aqueous solutions. <i>Adsorption</i> , 2012 , 18, 229-238	2.6	5
75	Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon. <i>Journal of Hazardous Materials</i> , 2012 , 225-226, 99-106	12.8	118
74	A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. <i>Journal of Hazardous Materials</i> , 2012 , 233-234, 1-6	12.8	27
73	Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water. <i>Journal of Hazardous Materials</i> , 2012 , 243, 319-25	12.8	59
72	Development of cation exchanger-based nano-CdS hybrid catalyst for visible-light photodegradation of rhodamine B from water. <i>Science China Chemistry</i> , 2012 , 55, 409-415	7.9	6
71	Visible light photocatalytic degradation of RhB by polymer-CdS nanocomposites: role of the host functional groups. <i>ACS Applied Materials & mp; Interfaces</i> , 2012 , 4, 3938-43	9.5	51
70	Efficient As(III) removal by macroporous anion exchanger-supported FeMn binary oxide: Behavior and mechanism. <i>Chemical Engineering Journal</i> , 2012 , 193-194, 131-138	14.7	59

(2010-2011)

69	Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. <i>Water Research</i> , 2011 , 45, 2191-8	12.5	186
68	Hydrous ferric oxide-resin nanocomposites of tunable structure for arsenite removal: effect of the host pore structure. <i>Journal of Hazardous Materials</i> , 2011 , 198, 241-6	12.8	65
67	Effect of CdS distribution on the photocatalytic performance of resin-CdS nanocomposites. <i>Chemical Engineering Journal</i> , 2011 , 174, 351-356	14.7	11
66	Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. <i>Chemical Engineering Journal</i> , 2011 , 178, 161-167	14.7	39
65	New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 5355-5364	2.3	49
64	Polymer-supported nanocomposites for environmental application: A review. <i>Chemical Engineering Journal</i> , 2011 , 170, 381-394	14.7	452
63	Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin. <i>Environmental Technology (United Kingdom)</i> , 2011 , 32, 145-53	2.6	11
62	Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu(II) removal. <i>Journal of Hazardous Materials</i> , 2011 , 190, 1037-44	12.8	48
61	Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. <i>Nanotechnology</i> , 2011 , 22, 305707	3.4	12
60	Research on Different Preparation Methods of New Photocatalysts. <i>Current Organic Chemistry</i> , 2010 , 14, 683-698	1.7	12
59	Research on Photocatalytic Degradation Pathway and Degradation Mechanisms of Organics. <i>Current Organic Chemistry</i> , 2010 , 14, 645-682	1.7	13
58	Selective Adsorption of Cd(II) and Zn(II) Ions by Nano-Hydrous Manganese Dioxide (HMO)-Encapsulated Cation Exchanger. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7574	- 3 :879	45
57	A new approach to catalytic degradation of dimethyl phthalate by a macroporous OH-type strongly basic anion exchange resin. <i>Environmental Science & Environmental & E</i>	10.3	27
56	Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	174
55	Structural Property and Catalytic Activity of New In2YbSbO7 and Gd2YbSbO7 Nanocatalysts under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9398-9407	3.8	16
54	Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study. <i>Water Research</i> , 2010 , 44, 815-24	12.5	204
53	Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 305-10		33
52	Application of heterogeneous adsorbents in removal of dimethyl phthalate: Equilibrium and heat. AICHE Journal, 2010, 56, 2699-2705	3.6	10

51	Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. <i>Journal of Colloid and Interface Science</i> , 2010 , 349, 607-12	9.3	142
50	Synthesis and catalytic activity of new Gd2BiSbO7 and Gd2YSbO7 nanocatalysts. <i>Journal of Molecular Catalysis A</i> , 2010 , 321, 1-9		22
49	Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. <i>Science of the Total Environment</i> , 2009 , 407, 5471-7	10.2	103
48	Sorption enhancement of 1-naphthol onto a hydrophilic hyper-cross-linked polymer resin. <i>Journal of Hazardous Materials</i> , 2009 , 163, 53-7	12.8	24
47	Structural, photophysical and photocatalytic properties of novel Bi2AlVO7. <i>Journal of Hazardous Materials</i> , 2009 , 164, 781-9	12.8	45
46	Adsorption and desorption hysteresis of 4-nitrophenol on a hyper-cross-linked polymer resin NDA-701. <i>Journal of Hazardous Materials</i> , 2009 , 168, 1217-22	12.8	19
45	Selective removal of Pb(II), Cd(II), and Zn(II) ions from waters by an inorganic exchanger Zr(HPO3S)2. <i>Journal of Hazardous Materials</i> , 2009 , 170, 824-8	12.8	29
44	Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. <i>Journal of Colloid and Interface Science</i> , 2009 , 331, 453-7	9.3	36
43	Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. <i>Chemical Engineering Journal</i> , 2009 , 151, 19-29	14.7	391
42	Adsorption equilibrium and heat of phenol onto aminated polymeric resins from aqueous solution. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 346, 34-38	5.1	32
41	Critical review in adsorption kinetic models. <i>Journal of Zhejiang University: Science A</i> , 2009 , 10, 716-724	2.1	982
40	Synthesis of Highly Selective Magnetic Mesoporous Adsorbent. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9804-9813	3.8	134
39	Impregnating Zirconium Phosphate onto Porous Polymers for Lead Removal from Waters: Effect of Nanosized Particles and Polymer Chemistry. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 4495-4499	3.9	20
38	Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. <i>Water Research</i> , 2009 , 43, 4421-9	12.5	241
37	Structural, photophysical and photocatalytic properties of new Bi2SbVO7 under visible light irradiation. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 6289-98	3.6	51
36	Arsenate Removal from Aqueous Media by Nanosized Hydrated Ferric Oxide (HFO)-Loaded Polymeric Sorbents: Effect of HFO Loadings. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 3957-3962	3.9	62
35	Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2. <i>Environmental Science & Environmental S</i>	10.3	102
34	Efficient removal of aromatic sulfonates from wastewater by a recyclable polymer: 2-naphthalene sulfonate as a representative pollutant. <i>Environmental Science & Environmental Environmenta</i>	10.3	48

33	Recent Patents on Polymeric Adsorbents and their Derivatives for Pollutants Removal from Aqueous Media: A Mini-Review. <i>Recent Patents on Engineering</i> , 2008 , 2, 122-131	0.3	1
32	Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 379-385		54
31	Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. <i>Journal of Colloid and Interface Science</i> , 2008 , 318, 160-6	9.3	55
30	Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. <i>Journal of Colloid and Interface Science</i> , 2008 , 319, 392-7	9.3	25
29	Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. <i>Journal of Colloid and Interface Science</i> , 2008 , 325, 41-7	9.3	49
28	Removal of aromatic sulfonates from aqueous media by aminated polymeric sorbents: Concentration-dependent selectivity and the application. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 63-69	5.3	22
27	A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. <i>Journal of Hazardous Materials</i> , 2008 , 152, 469-75	12.8	55
26	Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. <i>Journal of Hazardous Materials</i> , 2008 , 157, 293-9	12.8	65
25	Removal enhancement of 1-naphthol and 1-naphthylamine in single and binary aqueous phase by acid-basic interactions with polymer adsorbents. <i>Journal of Hazardous Materials</i> , 2008 , 158, 293-9	12.8	31
24	A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 322, 108-112	5.1	27
23	A comparative study of the adsorption properties of 1-naphthylamine by XAD-4 and NDA-150 polymer resins. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 331, 257-262	5.1	16
22	Improved adsorption of 4-nitrophenol onto a novel hHyper-cross-linked polymer. <i>Environmental Science & Environmental </i>	10.3	110
21	Enhanced removal of p-chloroaniline from aqueous solution by a carboxylated polymeric sorbent. Journal of Hazardous Materials, 2007 , 143, 462-8	12.8	9
20	Cooperative effect of lateral acidBase interaction on 1-naphthol/1-naphthylamine binary adsorption onto nonpolar polymer adsorbents. <i>Separation and Purification Technology</i> , 2007 , 55, 141-14	8.3	7
19	Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent. <i>Separation and Purification Technology</i> , 2007 , 57, 250-256	8.3	68
18	Modeling synergistic adsorption of phenol/aniline mixtures in the aqueous phase onto porous polymer adsorbents. <i>Journal of Colloid and Interface Science</i> , 2007 , 306, 216-21	9.3	40
17	Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 99-105	9.3	106
16	Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702. <i>Journal of Colloid and Interface Science</i> , 2007 , 311, 382-90	9.3	48

15	Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. <i>Water Research</i> , 2007 , 41, 3103-11	12.5	123
14	Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents. <i>Chemosphere</i> , 2007 , 66, 2044-9	8.4	28
13	Synergistic effect on phenol/aniline mixture adsorption on nonpolar resin adsorbents from aqueous solution. <i>Reactive and Functional Polymers</i> , 2006 , 66, 395-401	4.6	13
12	Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. <i>Water Research</i> , 2006 , 40, 2938-46	12.5	51
11	Cooperative adsorption behaviours of 1-naphthol and 1-naphthylamine onto nonpolar macroreticular adsorbents. <i>Reactive and Functional Polymers</i> , 2006 , 66, 485-493	4.6	18
10	Modeling cooperative adsorption of aromatic compounds in aqueous solutions to nonpolar adsorbent. <i>Separation and Purification Technology</i> , 2006 , 49, 130-135	8.3	17
9	Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water. <i>Journal of Hazardous Materials</i> , 2006 , 137, 1236-40	12.8	31
8	Sorption enhancement of aromatic sulfonates onto an aminated hyper-cross-linked polymer. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	108
7	Competitive and Cooperative Adsorption of Aromatic Acids and Bases onto a New Aminated Macroreticular Adsorbent. <i>Adsorption Science and Technology</i> , 2005 , 23, 751-762	3.6	5
6	Adsorption of phenolic compounds from aqueous solution onto a macroporous polymer and its aminated derivative: isotherm analysis. <i>Journal of Hazardous Materials</i> , 2005 , 121, 233-41	12.8	48
5	Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent. <i>Journal of Hazardous Materials</i> , 2005 , 124, 74-80	12.8	67
4	New Insights into the Activation of Peracetic Acid by Co(II): Role of Co(II)-Peracetic Acid Complex as the Dominant Intermediate Oxidant. <i>ACS ES&T Engineering</i> ,		2
3	Importance of High-Valent Iron Complex and Reactive Radicals in Organic Contaminants Abatement by the Fe-TAML/Free Chlorine System. <i>ACS ES&T Engineering</i> ,		3
2	Phosphorus Binding by Lanthanum Modified Pyroaurite-like Clay: Performance and Mechanisms. ACS ES&T Engineering,		3
1	Phosphorus in water: A review on the speciation analysis and species specific removal strategies. Critical Reviews in Environmental Science and Technology, 1-22	11.1	О