List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8916936/publications.pdf Version: 2024-02-01

RINCCAL PAN

#	Article	IF	CITATIONS
1	Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 2012, 211-212, 317-331.	6.5	1,767
2	Critical review in adsorption kinetic models. Journal of Zhejiang University: Science A, 2009, 10, 716-724.	1.3	1,223
3	Fe(III)-Doped g-C ₃ N ₄ Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species. Environmental Science & Technology, 2018, 52, 2197-2205.	4.6	687
4	Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, 2011, 170, 381-394.	6.6	534
5	Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chemical Engineering Journal, 2009, 151, 19-29.	6.6	463
6	Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6659-6664.	3.3	444
7	Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms. Environmental Science & Technology, 2020, 54, 50-66.	4.6	437
8	Nanomaterials-enabled water and wastewater treatment. NanoImpact, 2016, 3-4, 22-39.	2.4	286
9	Application potential of carbon nanotubes in water treatment: A review. Journal of Environmental Sciences, 2013, 25, 1263-1280.	3.2	280
10	Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Research, 2009, 43, 4421-4429.	5.3	275
11	Mathematically modeling fixed-bed adsorption in aqueous systems. Journal of Zhejiang University: Science A, 2013, 14, 155-176.	1.3	274
12	Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks. Environmental Science & Technology, 2016, 50, 1447-1454.	4.6	265
13	Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environmental Science & amp; Technology, 2021, 55, 2110-2120.	4.6	252
14	One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chemical Engineering Journal, 2017, 308, 791-797.	6.6	251
15	Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study. Water Research, 2010, 44, 815-824.	5.3	233
16	Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environmental Science & Technology, 2017, 51, 13533-13544.	4.6	231
17	Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water Research, 2018, 137, 37-46.	5.3	231
18	Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: Role of surface functional groups. Water Research, 2011, 45, 2191-2198.	5.3	213

#	Article	IF	CITATIONS
19	Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. Environmental Science & Technology, 2020, 54, 8509-8526.	4.6	209
20	Selective Removal of Cu(II) Ions by Using Cation-exchange Resin-Supported Polyethyleneimine (PEI) Nanoclusters. Environmental Science & Technology, 2010, 44, 3508-3513.	4.6	207
21	Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions. Environmental Science & Technology, 2018, 52, 2988-2997.	4.6	207
22	Enhanced Removal of Fluoride by Polystyrene Anion Exchanger Supported Hydrous Zirconium Oxide Nanoparticles. Environmental Science & Technology, 2013, 47, 9347-9354.	4.6	198
23	Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV). Water Research, 2015, 71, 274-281.	5.3	195
24	Decomplexation of Cu(II)-EDTA by UV/persulfate and UV/H2O2: Efficiency and mechanism. Applied Catalysis B: Environmental, 2017, 200, 439-447.	10.8	185
25	Adsorption and Reduction of Cr(VI) Together with Cr(III) Sequestration by Polyaniline Confined in Pores of Polystyrene Beads. Environmental Science & amp; Technology, 2018, 52, 12602-12611.	4.6	172
26	Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Advances, 2014, 4, 57377-57382.	1.7	170
27	Sorption Enhancement of Lead Ions from Water by Surface Charged Polystyrene-Supported Nano-Zirconium Oxide Composites. Environmental Science & Technology, 2013, 47, 6536-6544.	4.6	167
28	Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. Journal of Hazardous Materials, 2015, 284, 35-42.	6.5	166
29	Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. Journal of Colloid and Interface Science, 2010, 349, 607-612.	5.0	162
30	Peroxymonosulfate activation by iron(III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex. Water Research, 2018, 147, 233-241.	5.3	161
31	Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nature Communications, 2021, 12, 3508.	5.8	153
32	Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon. Journal of Hazardous Materials, 2012, 225-226, 99-106.	6.5	151
33	New Strategy To Enhance Phosphate Removal from Water by Hydrous Manganese Oxide. Environmental Science & Technology, 2014, 48, 5101-5107.	4.6	148
34	Synthesis of Highly Selective Magnetic Mesoporous Adsorbent. Journal of Physical Chemistry C, 2009, 113, 9804-9813.	1.5	145
35	Toward Selective Oxidation of Contaminants in Aqueous Systems. Environmental Science & Technology, 2021, 55, 14494-14514.	4.6	145
36	Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity. Water Research, 2019, 157, 472-482.	5.3	143

#	Article	IF	CITATIONS
37	Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism. Water Research, 2007, 41, 3103-3111.	5.3	142
38	Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways. Chemical Engineering Journal, 2016, 299, 23-29.	6.6	140
39	Facile Fabrication of Magnetic Chitosan Beads of Fast Kinetics and High Capacity for Copper Removal. ACS Applied Materials & Interfaces, 2014, 6, 3421-3426.	4.0	138
40	Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation. Applied Catalysis B: Environmental, 2021, 292, 120155.	10.8	137
41	Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)–Peroxymonosulfate Complex. Environmental Science & Technology, 2021, 55, 6397-6406.	4.6	134
42	Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Research, 2018, 143, 87-98.	5.3	131
43	MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. Journal of Hazardous Materials, 2019, 365, 312-321.	6.5	131
44	A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. Water Research, 2015, 87, 378-384.	5.3	128
45	Improved Adsorption of 4-Nitrophenol onto a Novel Hyper-Cross-Linked Polymer. Environmental Science & Technology, 2007, 41, 5057-5062.	4.6	126
46	Simultaneous Oxidation and Sequestration of As(III) from Water by Using Redox Polymer-Based Fe(III) Oxide Nanocomposite. Environmental Science & Technology, 2017, 51, 6326-6334.	4.6	124
47	Highly effective removal of heavy metals by polymer-based zirconium phosphate: A case study of lead ion. Journal of Colloid and Interface Science, 2007, 310, 99-105.	5.0	117
48	Mn ₂ O ₃ as an Electron Shuttle between Peroxymonosulfate and Organic Pollutants: The Dominant Role of Surface Reactive Mn(IV) Species. Environmental Science & Technology, 2022, 56, 4498-4506.	4.6	116
49	Sorption Enhancement of Aromatic Sulfonates onto an Aminated Hyper-Cross-Linked Polymer. Environmental Science & Technology, 2005, 39, 3308-3313.	4.6	115
50	Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Science of the Total Environment, 2009, 407, 5471-5477.	3.9	111
51	Water Decontamination from Cr(III)–Organic Complexes Based on Pyrite/H ₂ O ₂ : Performance, Mechanism, and Validation. Environmental Science & Technology, 2018, 52, 10657-10664.	4.6	111
52	Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism. Water Research, 2017, 126, 172-178.	5.3	109
53	Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway. Science of the Total Environment, 2019, 675, 62-72.	3.9	108
54	Selective Sorption of Lead, Cadmium and Zinc Ions by a Polymeric Cation Exchanger Containing Nano-Zr(HPO ₃ S) ₂ . Environmental Science & Technology, 2008, 42, 4140-4145.	4.6	107

#	Article	IF	CITATIONS
55	Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. Journal of Hazardous Materials, 2016, 316, 169-177.	6.5	107
56	Enhanced fluoride removal by La-doped Li/Al layered double hydroxides. Journal of Colloid and Interface Science, 2018, 509, 353-359.	5.0	105
57	Enhancing the Fenton-like Catalytic Activity of nFe ₂ O ₃ by MIL-53(Cu) Support: A Mechanistic Investigation. Environmental Science & Technology, 2020, 54, 5258-5267.	4.6	103
58	Fabrication of a New Hydrous Zr(IV) Oxide-Based Nanocomposite for Enhanced Pb(II) and Cd(II) Removal from Waters. ACS Applied Materials & Interfaces, 2013, 5, 12135-12142.	4.0	102
59	Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Research, 2013, 47, 6064-6074.	5.3	102
60	Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis. Water Research, 2021, 188, 116484.	5.3	99
61	Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 2019, 164, 114888.	5.3	98
62	Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. Water Research, 2014, 62, 220-228.	5.3	95
63	Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. Environmental Science & Technology, 2016, 50, 881-889.	4.6	95
64	Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Particle and Fibre Toxicology, 2015, 13, 7.	2.8	93
65	Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. Journal of Environmental Sciences, 2014, 26, 307-314.	3.2	88
66	Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration. Environmental Science & Technology, 2017, 51, 5090-5097.	4.6	88
67	Unexpected Favorable Role of Ca ²⁺ in Phosphate Removal by Using Nanosized Ferric Oxides Confined in Porous Polystyrene Beads. Environmental Science & Technology, 2019, 53, 365-372.	4.6	88
68	Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger. Water Research, 2016, 102, 109-116.	5.3	87
69	Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chemical Engineering Journal, 2014, 248, 290-296.	6.6	85
70	Arsenate Adsorption by Hydrous Ferric Oxide Nanoparticles Embedded in Cross-linked Anion Exchanger: Effect of the Host Pore Structure. ACS Applied Materials & Interfaces, 2016, 8, 3012-3020.	4.0	85
71	Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. Journal of Hazardous Materials, 2017, 321, 290-298.	6.5	85
72	The Fenton Reaction in Water Assisted by Picolinic Acid: Accelerated Iron Cycling and Co-generation of a Selective Fe-Based Oxidant. Environmental Science & Technology, 2021, 55, 8299-8308.	4.6	84

#	Article	IF	CITATIONS
73	Unravelling molecular transformation of dissolved effluent organic matter in UV/H2O2, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis. Water Research, 2021, 199, 117158.	5.3	84
74	Efficient As(III) removal by macroporous anion exchanger-supported Fe–Mn binary oxide: Behavior and mechanism. Chemical Engineering Journal, 2012, 193-194, 131-138.	6.6	81
75	Selective removal of phosphate in waters using a novel of cation adsorbent: Zirconium phosphate (ZrP) behavior and mechanism. Chemical Engineering Journal, 2013, 221, 315-321.	6.6	79
76	Autocatalytic Decomplexation of Cu(II)–EDTA and Simultaneous Removal of Aqueous Cu(II) by UV/Chlorine. Environmental Science & Technology, 2019, 53, 2036-2044.	4.6	79
77	Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chemical Engineering Journal, 2014, 249, 111-120.	6.6	77
78	Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal. Journal of Hazardous Materials, 2014, 276, 295-301.	6.5	77
79	Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water. Environmental Science & Technology, 2017, 51, 13363-13371.	4.6	77
80	Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater. Chemical Engineering Journal, 2020, 384, 123232.	6.6	76
81	Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent. Separation and Purification Technology, 2007, 57, 250-256.	3.9	74
82	Hydrous ferric oxide–resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure. Journal of Hazardous Materials, 2011, 198, 241-246.	6.5	74
83	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	2.2	74
84	Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer. Water Research, 2013, 47, 4730-4738.	5.3	73
85	Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation. Chemical Engineering Journal, 2019, 375, 122009.	6.6	73
86	Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent. Journal of Hazardous Materials, 2005, 124, 74-80.	6.5	72
87	Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. Water Research, 2021, 202, 117397.	5.3	72
88	Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. Journal of Hazardous Materials, 2008, 157, 293-299.	6.5	71
89	Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water. Journal of Hazardous Materials, 2012, 243, 319-325.	6.5	70
90	Highly Efficient Water Decontamination by Using Sub-10 nm FeOOH Confined within Millimeter-Sized Mesoporous Polystyrene Beads. Environmental Science & Technology, 2017, 51, 9210-9218.	4.6	70

#	Article	IF	CITATIONS
91	Multifunctional Piezoelectric Heterostructure of BaTiO ₃ @Graphene: Decomplexation of Cu-EDTA and Recovery of Cu. Environmental Science & Technology, 2019, 53, 8342-8351.	4.6	70
92	Overturned Loading of Inert CeO ₂ to Active Co ₃ O ₄ for Unusually Improved Catalytic Activity in Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
93	Selective interfacial oxidation of organic pollutants in Fenton-like system mediated by Fe(III)-adsorbed carbon nanotubes. Applied Catalysis B: Environmental, 2021, 292, 120193.	10.8	69
94	Arsenate Removal from Aqueous Media by Nanosized Hydrated Ferric Oxide (HFO)-Loaded Polymeric Sorbents: Effect of HFO Loadings. Industrial & Engineering Chemistry Research, 2008, 47, 3957-3962.	1.8	66
95	Nanoconfined Hydrated Zirconium Oxide for Selective Removal of Cu(II)-Carboxyl Complexes from High-Salinity Water via Ternary Complex Formation. Environmental Science & Technology, 2019, 53, 5319-5327.	4.6	66
96	Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process. Water Research, 2019, 153, 21-28.	5.3	66
97	Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. Journal of Colloid and Interface Science, 2008, 318, 160-166.	5.0	65
98	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	2.2	65
99	The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions. Applied Catalysis B: Environmental, 2021, 286, 119943.	10.8	65
100	Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II). Chemosphere, 2018, 193, 1235-1242.	4.2	63
101	Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. Science in China Series B: Chemistry, 2008, 51, 379-385.	0.8	61
102	Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: Properties and mechanism. Water Research, 2020, 173, 115596.	5.3	60
103	Visible Light Photocatalytic Degradation of RhB by Polymer-CdS Nanocomposites: Role of the Host Functional Groups. ACS Applied Materials & Interfaces, 2012, 4, 3938-3943.	4.0	58
104	A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. Journal of Hazardous Materials, 2008, 152, 469-475.	6.5	57
105	Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702. Journal of Colloid and Interface Science, 2007, 311, 382-390.	5.0	56
106	Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. Journal of Colloid and Interface Science, 2008, 325, 41-47.	5.0	56
107	Effect of sulfate on Cu(II) sorption to polymer-supported nano-iron oxides: Behavior and XPS study. Journal of Colloid and Interface Science, 2012, 366, 37-43.	5.0	56
108	Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite. Chemosphere, 2017, 171, 126-133.	4.2	56

#	Article	IF	CITATIONS
109	Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. Water Research, 2006, 40, 2938-2946.	5.3	55
110	Structural, photophysical and photocatalytic properties of new Bi2SbVO7 under visible light irradiation. Physical Chemistry Chemical Physics, 2009, 11, 6289.	1.3	55
111	Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu(II) removal. Journal of Hazardous Materials, 2011, 190, 1037-1044.	6.5	55
112	Efficient Removal of Aromatic Sulfonates from Wastewater by a Recyclable Polymer: 2-Naphthalene Sulfonate as a Representative Pollutant. Environmental Science & Technology, 2008, 42, 7411-7416.	4.6	54
113	New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. Journal of Nanoparticle Research, 2011, 13, 5355-5364.	0.8	54
114	Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: A case study of p-nitrophenol and phosphate. Chemical Engineering Journal, 2015, 268, 399-407.	6.6	54
115	Environmentally Friendly in Situ Regeneration of Graphene Aerogel as a Model Conductive Adsorbent. Environmental Science & Technology, 2018, 52, 739-746.	4.6	54
116	Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. Applied Catalysis B: Environmental, 2021, 298, 120537.	10.8	53
117	Adsorption of phenolic compounds from aqueous solution onto a macroporous polymer and its aminated derivative: isotherm analysis. Journal of Hazardous Materials, 2005, 121, 233-241.	6.5	52
118	Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. Journal of Hazardous Materials, 2018, 347, 160-167.	6.5	52
119	Structural, photophysical and photocatalytic properties of novel Bi2AlVO7. Journal of Hazardous Materials, 2009, 164, 781-789.	6.5	51
120	Enhanced debromination of 4-bromophenol by the UV/sulfite process: Efficiency and mechanism. Journal of Environmental Sciences, 2017, 54, 231-238.	3.2	51
121	Mesoporous Ce-Ti-Zr ternary oxide millispheres for efficient catalytic ozonation in bubble column. Chemical Engineering Journal, 2018, 338, 261-270.	6.6	51
122	Activation of zero-valent iron through ball-milling synthesis of hybrid Fe0/Fe3O4/FeCl2 microcomposite for enhanced nitrobenzene reduction. Journal of Hazardous Materials, 2019, 368, 698-704.	6.5	50
123	N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants. Chemical Engineering Journal, 2021, 403, 126395.	6.6	50
124	Structural Evolution of Lanthanum Hydroxides during Long-Term Phosphate Mitigation: Effect of Nanoconfinement. Environmental Science & Technology, 2021, 55, 665-676.	4.6	50
125	Selective Adsorption of Cd(II) and Zn(II) Ions by Nano-Hydrous Manganese Dioxide (HMO)-Encapsulated Cation Exchanger. Industrial & Engineering Chemistry Research, 2010, 49, 7574-7579.	1.8	48
126	Bacterial cellulose derived paper-like purifier with multifunctionality for water decontamination. Chemical Engineering Journal, 2019, 371, 730-737.	6.6	48

#	Article	IF	CITATIONS
127	Metastable Zirconium Phosphate under Nanoconfinement with Superior Adsorption Capability for Water Treatment. Advanced Functional Materials, 2020, 30, 1909014.	7.8	48
128	Improving reductive performance of zero valent iron by H2O2/HCl pretreatment: A case study on nitrate reduction. Chemical Engineering Journal, 2018, 334, 2255-2263.	6.6	47
129	Diketone-Mediated Photochemical Processes for Target-Selective Degradation of Dye Pollutants. Environmental Science and Technology Letters, 2014, 1, 167-171.	3.9	46
130	Self-enhanced ozonation of benzoic acid at acidic pHs. Water Research, 2015, 73, 9-16.	5.3	46
131	Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Research, 2021, 189, 116599.	5.3	46
132	Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation. Journal of Hazardous Materials, 2021, 409, 124920.	6.5	46
133	Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species. Science of the Total Environment, 2019, 683, 609-616.	3.9	45
134	Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. Chemical Engineering Journal, 2011, 178, 161-167.	6.6	44
135	Photodegradation of Acid Orange 7 in a UV/acetylacetone process. Chemosphere, 2013, 93, 2877-2882.	4.2	44
136	Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator. Water Research, 2016, 106, 461-469.	5.3	44
137	Effects of brining on the corrosion of ZVI and its subsequent As(III/V) and Se(IV/VI) removal from water. Chemosphere, 2017, 170, 251-259.	4.2	44
138	Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCI: Effect of solution chemistry and mechanism investigation. Water Research, 2018, 133, 173-181.	5.3	44
139	Effects of organic acids of different molecular size on phosphate removal by HZO-201 nanocomposite. Chemosphere, 2017, 166, 422-430.	4.2	43
140	Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. Journal of Colloid and Interface Science, 2009, 331, 453-457.	5.0	42
141	Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: Batch and column tests. Chemical Engineering Journal, 2018, 354, 445-453.	6.6	42
142	Analysis of trace phosphonates in authentic water samples by pre-methylation and LC-Orbitrap MS/MS. Water Research, 2019, 161, 78-88.	5.3	42
143	FeS2/H2O2 mediated water decontamination from p-arsanilic acid via coupling oxidation, adsorption and coagulation: Performance and mechanism. Chemical Engineering Journal, 2020, 381, 122667.	6.6	42
144	Enhanced Defluoridation Using Novel Millisphere Nanocomposite of La-Doped Li-Al Layered Double Hydroxides Supported by Polymeric Anion Exchanger. Scientific Reports, 2018, 8, 11741.	1.6	41

#	Article	IF	CITATIONS
145	Modeling synergistic adsorption of phenol/aniline mixtures in the aqueous phase onto porous polymer adsorbents. Journal of Colloid and Interface Science, 2007, 306, 216-221.	5.0	40
146	A thermally stable mesoporous ZrO2–CeO2–TiO2 visible light photocatalyst. Chemical Engineering Journal, 2013, 229, 118-125.	6.6	40
147	Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment. Applied Catalysis B: Environmental, 2021, 295, 120282.	10.8	40
148	Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions. Environmental Science & Technology, 2017, 51, 8597-8605.	4.6	39
149	Self-Enhanced Selective Oxidation of Phosphonate into Phosphate by Cu(II)/H ₂ O ₂ : Performance, Mechanism, and Validation. Environmental Science & Technology, 2022, 56, 634-641.	4.6	39
150	Non-hydroxyl radical mediated photochemical processes for dye degradation. Physical Chemistry Chemical Physics, 2014, 16, 7571-7577.	1.3	38
151	Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals. Journal of Hazardous Materials, 2022, 423, 127158.	6.5	38
152	Surface Chemistry of Nanosized Hydrated Ferric Oxide Encapsulated Inside Porous Polymer: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2013, 117, 6201-6209.	1.5	37
153	Removal enhancement of 1-naphthol and 1-naphthylamine in single and binary aqueous phase by acid–basic interactions with polymer adsorbents. Journal of Hazardous Materials, 2008, 158, 293-299.	6.5	36
154	Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent. Journal of Environmental Monitoring, 2010, 12, 305-310.	2.1	36
155	A fabrication strategy for nanosized zero valent iron (nZVI)–polymeric anion exchanger composites with tunable structure for nitrate reduction. Journal of Hazardous Materials, 2012, 233-234, 1-6.	6.5	36
156	Soft Particles Enable Fast and Selective Water Transport through Graphene Oxide Membranes. Nano Letters, 2020, 20, 7327-7332.	4.5	36
157	Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium) Tj ETQq1 1 0.784314 i	rgBT /Ove 6.6	rlogg 10 Tf 5
158	Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. Water Research, 2020, 184, 116173.	5.3	35
159	Dual-Functionalized MIL-101(Cr) for the Selective Enrichment and Ultrasensitive Analysis of Trace Per- and Poly-fluoroalkyl Substances. Analytical Chemistry, 2021, 93, 11116-11122.	3.2	35
160	Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water. Journal of Hazardous Materials, 2006, 137, 1236-1240.	6.5	34
161	Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents. Chemosphere, 2007, 66, 2044-2049.	4.2	34
162	Non-radical pathway dominated catalytic oxidation of As(III) with stoichiometric H2O2 over nanoceria. Environment International, 2019, 124, 393-399.	4.8	34

#	Article	IF	CITATIONS
163	Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction. Nano Research, 2021, 14, 2383.	5.8	34
164	Adsorption equilibrium and heat of phenol onto aminated polymeric resins from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 34-38.	2.3	33
165	A new strategy to address the challenges of nanoparticles in practical water treatment: mesoporous nanocomposite beads <i>via</i> flash freezing. Nanoscale, 2017, 9, 19154-19161.	2.8	33
166	New Insights into the Activation of Peracetic Acid by Co(II): Role of Co(II)-Peracetic Acid Complex as the Dominant Intermediate Oxidant. ACS ES&T Engineering, 2021, 1, 1432-1440.	3.7	33
167	A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 108-112.	2.3	32
168	Selective removal of Pb(II), Cd(II), and Zn(II) ions from waters by an inorganic exchanger Zr(HPO3S)2. Journal of Hazardous Materials, 2009, 170, 824-828.	6.5	32
169	Integrating cationic metal-organic frameworks with ultrafiltration membrane for selective removal of perchlorate from Water. Journal of Hazardous Materials, 2020, 381, 120961.	6.5	32
170	Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions. Chemical Engineering Journal, 2020, 391, 123592.	6.6	32
171	Enhanced Fenton-like Oxidation of As(III) over Ce–Ti Binary Oxide: A New Strategy to Tune Catalytic Activity via Balancing Bimolecular Adsorption Energies. Environmental Science & Technology, 2020, 54, 5893-5901.	4.6	32
172	Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers: Effect of ionic strength and visible light irradiation. Chemical Engineering Journal, 2013, 232, 167-173.	6.6	31
173	Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. Science China Chemistry, 2014, 57, 763-771.	4.2	31
174	Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction. Water Research, 2017, 124, 331-340.	5.3	31
175	Mn(II) Acceleration of the Picolinic Acid-Assisted Fenton Reaction: New Insight into the Role of Manganese in Homogeneous Fenton AOPs. Environmental Science & Technology, 2022, 56, 6621-6630.	4.6	31
176	A New Approach to Catalytic Degradation of Dimethyl Phthlate by a Macroporous OH-Type Strongly Basic Anion Exchange Resin. Environmental Science & Technology, 2010, 44, 3130-3135.	4.6	30
177	Molecular-scale investigation of fluoride sorption mechanism by nanosized hydroxyapatite using 19F solid-state NMR spectroscopy. Journal of Colloid and Interface Science, 2019, 557, 357-366.	5.0	30
178	Struvite-based phosphorus recovery from the concentrated bioeffluent by using HFO nanocomposite adsorption: Effect of solution chemistry. Chemosphere, 2015, 141, 227-234.	4.2	29
179	Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide: Performance, characterization and implication. Chemical Engineering Journal, 2015, 260, 616-622.	6.6	29
180	Iron oxide nanoparticles confined in mesoporous silicates for arsenic sequestration: effect of the host pore structure. Environmental Science: Nano, 2017, 4, 679-688.	2.2	28

#	Article	IF	CITATIONS
181	Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. Chemosphere, 2018, 191, 971-978.	4.2	28
182	Molecular identification guided process design for advanced treatment of electroless nickel plating effluent. Water Research, 2020, 168, 115211.	5.3	28
183	Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. Journal of Colloid and Interface Science, 2008, 319, 392-397.	5.0	27
184	Sorption enhancement of 1-naphthol onto a hydrophilic hyper-cross-linked polymer resin. Journal of Hazardous Materials, 2009, 163, 53-57.	6.5	27
185	Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaledup study. Frontiers of Environmental Science and Engineering, 2013, 7, 435-441.	3.3	27
186	Dual-functional millisphere of anion-exchanger-supported nanoceria for synergistic As(III) removal with stoichiometric H2O2: Catalytic oxidation and sorption. Chemical Engineering Journal, 2019, 360, 982-989.	6.6	27
187	Enhanced removal of arsenic from water by using sub-10Ânm hydrated zirconium oxides confined inside gel-type anion exchanger. Journal of Hazardous Materials, 2021, 414, 125505.	6.5	27
188	Enhanced Nitrobenzene reduction by zero valent iron pretreated with H2O2/HCl. Chemosphere, 2018, 197, 494-501.	4.2	26
189	Utilization of gel-type polystyrene host for immobilization of nano-sized hydrated zirconium oxides: A new strategy for enhanced phosphate removal. Chemosphere, 2021, 263, 127938.	4.2	26
190	Adsorption and desorption hysteresis of 4-nitrophenol on a hyper-cross-linked polymer resin NDA-701. Journal of Hazardous Materials, 2009, 168, 1217-1222.	6.5	24
191	Enhanced HO production from ozonation activated by EDTA. Chemical Engineering Journal, 2016, 288, 562-568.	6.6	24
192	Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest Î ² -Diketone. Environmental Science & Technology, 2021, 55, 14173-14184.	4.6	24
193	Impregnating Zirconium Phosphate onto Porous Polymers for Lead Removal from Waters: Effect of Nanosized Particles and Polymer Chemistry. Industrial & Engineering Chemistry Research, 2009, 48, 4495-4499.	1.8	23
194	Synthesis and catalytic activity of new Gd2BiSbO7 and Gd2YSbO7 nanocatalysts. Journal of Molecular Catalysis A, 2010, 321, 1-9.	4.8	23
195	Efficient Removal of Trace Se(VI) by Millimeter-Sized Nanocomposite of Zerovalent Iron Confined in Polymeric Anion Exchanger. Industrial & Engineering Chemistry Research, 2017, 56, 5309-5317.	1.8	23
196	Enhanced production of methane in anaerobic water treatment as mediated by the immobilized fungi. Water Research, 2021, 190, 116761.	5.3	23
197	Revisiting the Heterogeneous Peroxymonosulfate Activation by MoS ₂ : a Surface Mo–Peroxymonosulfate Complex as the Major Reactive Species. ACS ES&T Water, 2022, 2, 376-384.	2.3	23
198	Removal of aromatic sulfonates from aqueous media by aminated polymeric sorbents: Concentration-dependent selectivity and the application. Microporous and Mesoporous Materials, 2008, 116, 63-69.	2.2	22

#	Article	IF	CITATIONS
199	Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environmental Science and Pollution Research, 2014, 21, 6729-6735.	2.7	22
200	Ionic Polymer-Coated Laccase with High Activity and Enhanced Stability: Application in the Decolourisation of Water Containing AO7. Scientific Reports, 2015, 5, 8253.	1.6	22
201	Removal of model dyes on charged UF membranes: Experiment and simulation. Chemosphere, 2020, 240, 124940.	4.2	22
202	Highly efficient photodegradation of various organic pollutants in water: Rational structural design of photocatalyst via thiol-ene click reaction. Chemical Engineering Journal, 2020, 381, 122631.	6.6	22
203	Validation of pilot-scale phosphate polishing removal from surface water by lanthanum-based polymeric nanocomposite. Chemical Engineering Journal, 2021, 412, 128630.	6.6	22
204	Cooperative adsorption behaviours of 1-naphthol and 1-naphthylamine onto nonpolar macroreticular adsorbents. Reactive and Functional Polymers, 2006, 66, 485-493.	2.0	21
205	A novel combined process for efficient removal of Se(VI) from sulfate-rich water: Sulfite/UV/Fe(III) coagulation. Chemosphere, 2018, 211, 867-874.	4.2	21
206	Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence. RSC Advances, 2015, 5, 7363-7369.	1.7	20
207	A preliminary exploration on Au nanoparticles-mediated colorimetric analysis of Cr(III)-carboxyl complexes in synthetic and authentic water samples. Chemical Engineering Journal, 2020, 387, 124079.	6.6	20
208	A comparative study of the adsorption properties of 1-naphthylamine by XAD-4 and NDA-150 polymer resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 257-262.	2.3	19
209	Mesoporous polyacrylonitrile membrane with ultrahigh loading of well-dispersed Fe2O3 nanoparticles: A powerful phosphate scavenger Enabling inhibition of microbial regrowth in Treated Water. Journal of Membrane Science, 2020, 603, 118048.	4.1	19
210	Phosphorus Binding by Lanthanum Modified Pyroaurite-like Clay: Performance and Mechanisms. ACS ES&T Engineering, 2021, 1, 1565-1575.	3.7	19
211	Phosphorus in water: A review on the speciation analysis and species specific removal strategies. Critical Reviews in Environmental Science and Technology, 2023, 53, 435-456.	6.6	19
212	Modeling cooperative adsorption of aromatic compounds in aqueous solutions to nonpolar adsorbent. Separation and Purification Technology, 2006, 49, 130-135.	3.9	18
213	The photochemistry of carbon nanotubes and its impact on the photo-degradation of dye pollutants in aqueous solutions. Journal of Colloid and Interface Science, 2015, 439, 98-104.	5.0	18
214	Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?. Chemosphere, 2015, 131, 55-62.	4.2	18
215	Validation of a combined Fe(III)/UV/NaOH process for efficient removal of carboxyl complexed Ni from synthetic and authentic effluents. Chemosphere, 2019, 234, 917-924.	4.2	18
216	Enhancing the performance of Fenton-like oxidation by a dual-layer membrane: A sequential interception-oxidation process. Journal of Hazardous Materials, 2021, 402, 123766.	6.5	18

#	Article	IF	CITATIONS
217	Simple fabrication of polymer-based Trametes versicolor laccase for decolorization of malachite green. Bioresource Technology, 2012, 115, 16-20.	4.8	17
218	New insights into the fractionation of effluent organic matter on diagnosis of key composition affecting advanced phosphate removal by Zr-based nanocomposite. Water Research, 2020, 186, 116299.	5.3	17
219	Facet-dependent phosphate adsorptive reactivity by lanthanum hydroxides of different crystal structure: Role of surface hydroxyl groups. Applied Surface Science, 2021, 538, 147910.	3.1	17
220	Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite. Water Research, 2021, 189, 116673.	5.3	17
221	Structural Property and Catalytic Activity of New In ₂ YbSbO ₇ and Gd ₂ YbSbO ₇ Nanocatalysts under Visible Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 9398-9407.	1.5	16
222	Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants. Environmental Science and Pollution Research, 2015, 22, 10882-10889.	2.7	16
223	Deep removal of arsenite from water with no need for pre-oxidation or in-line oxidation. Chemical Engineering Journal, 2020, 401, 126046.	6.6	16
224	A new polymer-based laccase for decolorization of AO7: Long-term storage and mediator reuse. Bioresource Technology, 2014, 164, 248-253.	4.8	15
225	Light-triggered reversible sorption of azo dyes on titanium xerogels with photo-switchable acetylacetonato anchors. Chemical Communications, 2014, 50, 1086-1088.	2.2	15
226	Selective removal of organic phosphonates via coupling hyper-cross-linked resin with nanoconfined hydrated oxides. Chemical Engineering Journal, 2022, 428, 132620.	6.6	15
227	Mechanism of the Significant Acceleration of Polyethylene Terephthalate Glycolysis by Defective Ultrathin ZnO Nanosheets with Heteroatom Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 5476-5488.	3.2	15
228	Synergistic effect on phenol/aniline mixture adsorption on nonpolar resin adsorbents from aqueous solution. Reactive and Functional Polymers, 2006, 66, 395-401.	2.0	14
229	Research on Photocatalytic Degradation Pathway and Degradation Mechanisms of Organics. Current Organic Chemistry, 2010, 14, 645-682.	0.9	14
230	Effect of CdS distribution on the photocatalytic performance of resin-CdS nanocomposites. Chemical Engineering Journal, 2011, 174, 351-356.	6.6	14
231	Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. Nanotechnology, 2011, 22, 305707.	1.3	14
232	Tributylhexadecylphosphonium Modification Strategy to Construct Gold Nanoprobes for the Detection of Aqueous Cr(III)–Organic Complexes. Analytical Chemistry, 2021, 93, 1811-1817.	3.2	14
233	Importance of High-Valent Iron Complex and Reactive Radicals in Organic Contaminants' Abatement by the Fe-TAML/Free Chlorine System. ACS ES&T Engineering, 2021, 1, 1401-1409.	3.7	14
234	Application of heterogeneous adsorbents in removal of dimethyl phthalate: Equilibrium and heat. AICHE Journal, 2010, 56, 2699-2705.	1.8	13

#	Article	IF	CITATIONS
235	Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen peroxide: Dispersed versus resin-supported zero-valent iron. Journal of Colloid and Interface Science, 2014, 428, 179-184.	5.0	13
236	Surface chemistry of polymer-supported nano-hydrated ferric oxide for arsenic removal: effect of host pore structure. Science China Chemistry, 2015, 58, 722-730.	4.2	13
237	Research on Different Preparation Methods of New Photocatalysts. Current Organic Chemistry, 2010, 14, 683-698.	0.9	12
238	Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin. Environmental Technology (United Kingdom), 2011, 32, 145-153.	1.2	12
239	A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments. Journal of Environmental Sciences, 2015, 29, 1-10.	3.2	12
240	Enhanced water decontamination from methylated arsenic by utilizing ultra-small hydrated zirconium oxides encapsulated inside gel-type anion exchanger. Chemical Engineering Journal, 2022, 430, 132641.	6.6	12
241	Highly efficient and environmentally benign As(III) pre-oxidation in water by using a solid redox polymer. Chemosphere, 2017, 175, 300-306.	4.2	11
242	Photochemical activation of seemingly inert SO42â^' in specific water environments. Chemosphere, 2019, 214, 399-407.	4.2	11
243	Membrane cleaning strategy via in situ oscillation driven by piezoelectricity. Journal of Membrane Science, 2021, 638, 119722.	4.1	11
244	Cooperative effect of lateral acid–base interaction on 1-naphthol/1-naphthylamine binary adsorption onto nonpolar polymer adsorbents. Separation and Purification Technology, 2007, 55, 141-146.	3.9	10
245	Effect of spatial distribution and aging of ZVI on the reactivity of resin–ZVI composites for arsenite removal. Journal of Materials Science, 2014, 49, 7073-7079.	1.7	10
246	Enhanced removal of p-chloroaniline from aqueous solution by a carboxylated polymeric sorbent. Journal of Hazardous Materials, 2007, 143, 462-468.	6.5	9
247	Preparation and performance evaluation of resin-derived carbon spheres for desulfurization of fuels. Science China Chemistry, 2013, 56, 393-398.	4.2	8
248	Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol. Bioresource Technology, 2013, 142, 701-705.	4.8	8
249	In-situ forming Sub-2Ânm hydrous iron oxide particles in MOFs for deep-treatment and high anti-interference in arsenic removal. Chemical Engineering Journal, 2022, 431, 133813.	6.6	8
250	Construction of model platforms to probe the confinement effect of nanocomposite-enabled water treatment. Chemical Engineering Journal Advances, 2022, 9, 100229.	2.4	8
251	Development of cation exchanger-based nano-CdS hybrid catalyst for visible-light photodegradation of rhodamine B from water. Science China Chemistry, 2012, 55, 409-415.	4.2	7
252	Enhanced removal of selenate from mining effluent by H2O2/HCl-pretreated zero-valent iron. Water Science and Technology, 2018, 78, 2404-2413.	1.2	7

#	Article	IF	CITATIONS
253	A human cell panel for evaluating safe application of nano-ZrO2/polymer composite in water remediation. Ecotoxicology and Environmental Safety, 2018, 166, 474-481.	2.9	7
254	Metal-free biomass with abundant carbonyl groups as efficient catalyst for the activation of peroxymonosulfate and degradation of sulfamethoxazole. Chemical Engineering Journal, 2022, 430, 132767.	6.6	7
255	Overturned Loading of Inert CeO ₂ to Active Co ₃ O ₄ for Unusually Improved Catalytic Activity in Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	1.6	7
256	The correlation between structural characteristics of activated carbons and their adsorption of organic solutes from aqueous solutions. Adsorption, 2012, 18, 229-238.	1.4	6
257	Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst. Science China Chemistry, 2015, 58, 1211-1219.	4.2	6
258	Effect of 3-D distribution of ZVI nanoparticles confined in polymeric anion exchanger on EDTA-chelated Cu(II) removal. Environmental Science and Pollution Research, 2019, 26, 10013-10022.	2.7	6
259	Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	6
260	Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. Ecotoxicology, 2021, 30, 1446-1453.	1.1	6
261	Competitive and Cooperative Adsorption of Aromatic Acids and Bases onto a New Aminated Macroreticular Adsorbent. Adsorption Science and Technology, 2005, 23, 751-762.	1.5	5
262	Polymer and Polymer-Based Nanocomposite Adsorbents for Water Treatment. Springer Series on Polymer and Composite Materials, 2019, , 93-119.	0.5	5
263	Ferroelectric membrane for water purification with arsenic as model pollutant. Chemical Engineering Journal, 2021, 403, 126426.	6.6	5
264	Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. Langmuir, 2021, 37, 9793-9801.	1.6	5
265	Cationic Surfactant-Mediated Coagulation for Enhanced Removal of Toxic Metal–Organic Complexes: Performance, Mechanism, and Validation. ACS ES&T Engineering, 2022, 2, 895-902.	3.7	5
266	Highly efficient removal of arsenite from water by using renewable sub-5Ânm Zr-Mn binary oxides confined inside gel-type ion exchanger. Chemical Engineering Journal, 2022, 431, 134082.	6.6	3
267	Enhanced Photochemical/Electrochemical Performance of Graphene Benefited from Morphological Change as Substrate of Typical Composites. Advanced Materials Interfaces, 2018, 5, 1800035.	1.9	2
268	Porous nanocomposites for water treatment: past, present, and future. , 2020, , 479-503.		2
269	An all-in-one approach for synthesis and functionalization of nano colloidal gold with acetylacetone. Nanotechnology, 2022, 33, 075605.	1.3	2
270	Recent Patents on Polymeric Adsorbents and their Derivatives for Pollutants Removal from Aqueous Media: A Mini-Review. Recent Patents on Engineering, 2008, 2, 122-131.	0.3	1

#	Article	IF	CITATIONS
271	Preparation of mesoporous Ce-Ti oxide millispheres for efficient catalytic ozonation: Performance and mechanism. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2019, 49, 565-578.	0.3	1
272	Commercial Gel-Type Ion Exchange Resin Enables Large-Scale Production of Ultrasmall Nanoparticles for Highly Efficient Water Decontamination. Engineering, 2021, , .	3.2	1
273	Catalytic aerobic oxidation of P(I)/P(III) into P(V) over PdNi10 as a low-cost alternative catalyst rivaling Pd. Chemical Engineering Journal, 2022, 446, 136892.	6.6	1
274	Scenario oriented strategies for phosphorus management by using environmental nanotechnology. Current Opinion in Chemical Engineering, 2021, 34, 100720.	3.8	0