
William Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8916920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scenarios for Global Biodiversity in the 21st Century. Science, 2010, 330, 1496-1501.	12.6	1,570
2	Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 2009, 10, 235-251.	5.3	1,231
3	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	12.6	949
4	Largeâ€scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 2010, 16, 24-35.	9.5	943
5	Signature of ocean warming in global fisheries catch. Nature, 2013, 497, 365-368.	27.8	669
6	Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 2013, 3, 254-258.	18.8	527
7	Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 2011, 1, 449-456.	18.8	506
8	The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Global Ecology and Biogeography, 2012, 21, 465-480.	5.8	488
9	A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biological Conservation, 2005, 124, 97-111.	4.1	385
10	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	7.1	357
11	Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish and Fisheries, 2013, 14, 119-136.	5.3	330
12	Increasing jellyfish populations: trends in Large Marine Ecosystems. Hydrobiologia, 2012, 690, 3-20.	2.0	303
13	A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals. Marine Policy, 2018, 93, 223-231.	3.2	278
14	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	3.2	272
15	Sustainability of deep-sea fisheries. Marine Policy, 2012, 36, 307-320.	3.2	267
16	Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 2011, 68, 1008-1018.	2.5	253
17	Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Frontiers in Marine Science, 2018, 5, .	2.5	248
18	Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science, 2015, 72, 741-752.	2.5	224

#	Article	IF	CITATIONS
19	Global marine yield halved as fishing intensity redoubles. Fish and Fisheries, 2013, 14, 493-503.	5.3	205
20	Reconciling fisheries catch and ocean productivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1441-E1449.	7.1	195
21	Projected change in global fisheries revenues under climate change. Scientific Reports, 2016, 6, 32607.	3.3	192
22	Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science, 2016, 354, 1591-1594.	12.6	191
23	Intrinsic vulnerability in the global fish catch. Marine Ecology - Progress Series, 2007, 333, 1-12.	1.9	170
24	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	7.8	161
25	Food security implications of global marine catch losses due to overfishing. Journal of Bioeconomics, 2010, 12, 183-200.	3.3	160
26	Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES Journal of Marine Science, 2011, 68, 1217-1229.	2.5	159
27	Twentyâ€firstâ€century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology, 2019, 25, 459-472.	9.5	151
28	Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology, 2015, 21, 130-143.	9.5	148
29	Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochemical Cycles, 2016, 30, 1224-1243.	4.9	142
30	Levers and leverage points for pathways to sustainability. People and Nature, 2020, 2, 693-717.	3.7	141
31	Near extinction of a highly fecund fish: the one that nearly got away. Fish and Fisheries, 2003, 4, 86-99.	5.3	139
32	Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Progress in Oceanography, 2015, 130, 19-31.	3.2	136
33	Climate change, tropical fisheries and prospects for sustainable development. Nature Reviews Earth & Environment, 2020, 1, 440-454.	29.7	136
34	Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Frontiers in Marine Science, 2016, 3, .	2.5	129
35	Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature, 2020, 2, 1172-1195.	3.7	127
36	Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science, 2016, 73, 1272-1282.	2.5	126

#	Article	IF	CITATIONS
37	Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling, 2016, 325, 57-66.	2.5	124
38	Impact of the <i>Deepwater Horizon</i> well blowout on the economics of US Gulf fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 499-510.	1.4	123
39	Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biology, 2017, 23, 3984-4001.	9.5	122
40	Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific Reports, 2020, 10, 6678.	3.3	121
41	Application of macroecological theory to predict effects of climate change on global fisheries potential. Marine Ecology - Progress Series, 2008, 365, 187-197.	1.9	120
42	Winners and losers in a world where the high seas is closed to fishing. Scientific Reports, 2015, 5, 8481.	3.3	118
43	Trade-offs between conservation and socio-economic objectives in managing a tropical marine ecosystem. Ecological Economics, 2008, 66, 193-210.	5.7	116
44	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	3.6	116
45	Climate change impacts on fisheries in West Africa: implications for economic, food and nutritional security. African Journal of Marine Science, 2012, 34, 103-117.	1.1	114
46	Benefits of Rebuilding Global Marine Fisheries Outweigh Costs. PLoS ONE, 2012, 7, e40542.	2.5	113
47	Modelling commercial fish distributions: Prediction and assessment using different approaches. Ecological Modelling, 2012, 225, 133-145.	2.5	111
48	Enabling conditions for an equitable and sustainable blue economy. Nature, 2021, 591, 396-401.	27.8	108
49	Adaptive capacity: from assessment to action in coastal social-ecological systems. Ecology and Society, 2017, 22, .	2.3	107
50	Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biology, 2013, 19, 2596-2607.	9.5	106
51	Building confidence in projections of the responses of living marine resources to climate change. ICES Journal of Marine Science, 2016, 73, 1283-1296.	2.5	106
52	Fisheries: Hope or despair?. Marine Pollution Bulletin, 2013, 74, 506-516.	5.0	96
53	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	18.8	96
54	Vulnerability of seamount fish to fishing: fuzzy analysis of life-history attributes. Journal of Fish Biology, 2006, 68, 209-221.	1.6	91

#	Article	IF	CITATIONS
55	Adaptation strategies to climate change in marine systems. Global Change Biology, 2018, 24, e1-e14.	9.5	91
56	Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PLoS ONE, 2018, 13, e0194537.	2.5	90
57	Climate-change induced tropicalisation of marine communities in Western Australia. Marine and Freshwater Research, 2012, 63, 415.	1.3	89
58	Review of climate change impacts on marine fisheries in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 368-388.	2.0	86
59	Social equity and benefits as the nexus of a transformative Blue Economy: A sectoral review of implications. Marine Policy, 2019, 109, 103702.	3.2	79
60	Benefits of the Paris Agreement to ocean life, economies, and people. Science Advances, 2019, 5, eaau3855.	10.3	79
61	Predicting the Impact of Climate Change on Threatened Species in UK Waters. PLoS ONE, 2013, 8, e54216.	2.5	78
62	Database-driven models of the world's Large Marine Ecosystems. Ecological Modelling, 2009, 220, 1984-1996.	2.5	71
63	Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Science Advances, 2021, 7, eabh0895.	10.3	70
64	Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Marine Policy, 2016, 71, 15-28.	3.2	69
65	The global ocean is an ecosystem: simulating marine life and fisheries. Global Ecology and Biogeography, 2015, 24, 507-517.	5.8	68
66	Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Marine Policy, 2018, 88, 285-294.	3.2	67
67	Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE, 2018, 13, e0191086.	2.5	63
68	A climate-informed, ecosystem approach to fisheries management. Marine Policy, 2015, 57, 182-192.	3.2	60
69	Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Science Advances, 2019, 5, eaaw9976.	10.3	60
70	Climate change undermines the global functioning of marine food webs. Global Change Biology, 2020, 26, 1306-1318.	9.5	60
71	Polar lessons learned: longâ€ŧerm management based on shared threats in Arctic and Antarctic environments. Frontiers in Ecology and the Environment, 2015, 13, 316-324.	4.0	59
72	A framework to identify enabling and urgent actions for the 2020 Aichi Targets. Basic and Applied Ecology, 2014, 15, 633-638.	2.7	58

#	Article	IF	CITATIONS
73	Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios. ICES Journal of Marine Science, 2016, 73, 1357-1369.	2.5	58
74	Using fuzzy logic to determine the vulnerability of marine species to climate change. Global Change Biology, 2018, 24, e719-e731.	9.5	58
75	Marine capture fisheries in the Arctic: winners or losers under climate change and ocean acidification?. Fish and Fisheries, 2016, 17, 335-357.	5.3	57
76	Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Marine Policy, 2020, 122, 103927.	3.2	56
77	Modelling the potential impacts of climate change and human activities on the sustainability of marine resources. Current Opinion in Environmental Sustainability, 2010, 2, 326-333.	6.3	55
78	Conservation physiology for applied management of marine fish: an overview with perspectives on the role and value of telemetry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1746-1756.	4.0	55
79	Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research, 2012, 31, 11091.	1.6	54
80	Retrospective evaluation of data-limited fisheries: a case from Hong Kong. Reviews in Fish Biology and Fisheries, 2004, 14, 181-206.	4.9	51
81	Opportunities for climateâ€risk reduction through effective fisheries management. Global Change Biology, 2018, 24, 5149-5163.	9.5	50
82	Governing Marine Fisheries in a Changing Climate: A Gameâ€Theoretic Perspective. Canadian Journal of Agricultural Economics, 2013, 61, 309-334.	2.1	49
83	Using scenarios to project the changing profitability of fisheries under climate change. Fish and Fisheries, 2015, 16, 603-622.	5.3	48
84	Compound climate risks threaten aquatic food system benefits. Nature Food, 2021, 2, 673-682.	14.0	48
85	Governing for Transformative Change across the Biodiversity–Climate–Society Nexus. BioScience, 2022, 72, 684-704.	4.9	48
86	Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services. Frontiers in Climate, 2021, 3, .	2.8	46
87	Conservation physiology of marine fishes: advancing the predictive capacity of models. Biology Letters, 2012, 8, 900-903.	2.3	43
88	Impacts of the Changing Ocean-Sea Ice System on the Key Forage Fish Arctic Cod (Boreogadus Saida) and Subsistence Fisheries in the Western Canadian Arctic—Evaluating Linked Climate, Ecosystem and Economic (CEE) Models. Frontiers in Marine Science, 2019, 6, .	2.5	43
89	Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities. PLoS ONE, 2016, 11, e0145285.	2.5	43
90	Global change in the trophic functioning of marine food webs. PLoS ONE, 2017, 12, e0182826.	2.5	43

#	Article	IF	CITATIONS
91	Disentangling diverse responses to climate change among global marine ecosystem models. Progress in Oceanography, 2021, 198, 102659.	3.2	42
92	Interacting Regional-Scale Regime Shifts for Biodiversity and Ecosystem Services. BioScience, 2014, 64, 665-679.	4.9	41
93	Transform high seas management to build climate resilience in marine seafood supply. Fish and Fisheries, 2017, 18, 254-263.	5.3	39
94	What is at stake? Status and threats to South China Sea marine fisheries. Ambio, 2017, 46, 57-72.	5.5	38
95	The environmental niche of the global high seas pelagic longline fleet. Science Advances, 2018, 4, eaat3681.	10.3	38
96	A quantitative review of abundanceâ€based species distribution models. Ecography, 2022, 2022, .	4.5	37
97	The vital roles of blue foods in the global food system. Global Food Security, 2022, 33, 100637.	8.1	37
98	Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us. People and Nature, 2019, 1, 317-330.	3.7	36
99	Micronutrient supply from global marine fisheries under climate change and overfishing. Current Biology, 2021, 31, 4132-4138.e3.	3.9	35
100	Climateâ€induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Global Change Biology, 2021, 27, 2608-2622.	9.5	32
101	Is fisheries production within <scp>L</scp> arge <scp>M</scp> arine <scp>E</scp> cosystems determined by bottomâ€up or topâ€down forcing?. Fish and Fisheries, 2015, 16, 623-632.	5.3	31
102	Mass-balance ecosystem model of the East China Sea. Progress in Natural Science: Materials International, 2009, 19, 1271-1280.	4.4	30
103	Timing and magnitude of climateâ€driven range shifts in transboundary fish stocks challenge their management. Global Change Biology, 2022, 28, 2312-2326.	9.5	30
104	Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making. One Earth, 2021, 4, 967-985.	6.8	29
105	The United Kingdom's role in North Sea demersal fisheries: a hundred year perspective. Reviews in Fish Biology and Fisheries, 2012, 22, 621-634.	4.9	28
106	Canada at a crossroad: The imperative for realigning ocean policy with ocean science. Marine Policy, 2016, 63, 53-60.	3.2	28
107	Aerobic growth index (AGI): An index to understand the impacts of ocean warming and deoxygenation on global marine fisheries resources. Progress in Oceanography, 2021, 195, 102588.	3.2	28
108	Predicting how climate change threatens the prey base of Arctic marine predators. Ecology Letters, 2021, 24, 2563-2575.	6.4	27

#	Article	IF	CITATIONS
109	How to make progress in projecting climate change impacts. ICES Journal of Marine Science, 2013, 70, 1069-1074.	2.5	26
110	Potential impacts of climate-related decline of seafood harvest on nutritional status of coastal First Nations in British Columbia, Canada. PLoS ONE, 2019, 14, e0211473.	2.5	25
111	Can we project changes in fish abundance and distribution in response to climate?. Global Change Biology, 2020, 26, 3891-3905.	9.5	25
112	Projecting global mariculture diversity under climate change. Global Change Biology, 2020, 26, 2134-2148.	9.5	25
113	Global deposition of airborne dioxin. Marine Pollution Bulletin, 2013, 75, 182-186.	5.0	24
114	Evaluating the status of exploited taxa in the northern South China Sea using intrinsic vulnerability and spatially explicit catch-per-unit-effort data. Fisheries Research, 2008, 92, 28-40.	1.7	23
115	Comparing trophic structure of a subtropical bay as estimated from mass-balance food web model and stable isotope analysis. Ecological Modelling, 2015, 312, 175-181.	2.5	23
116	The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1351-1359.	2.0	23
117	Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries. PLoS ONE, 2020, 15, e0226544.	2.5	23
118	Sustainable fisheries are essential but not enough to ensure wellâ€being for the world's fishers. Fish and Fisheries, 2021, 22, 812-821.	5.3	22
119	Spatial differentiation of marine eutrophication damage indicators based on species density. Ecological Indicators, 2017, 73, 676-685.	6.3	20
120	Differing marine animal biomass shifts under 21st century climate change between Canada's three oceans. Facets, 2020, 5, 105-122.	2.4	20
121	Applying distribution model projections for an uncertain future: the case of the Pacific oyster in UK waters. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 710-722.	2.0	19
122	Can we meet the Target? Status and future trends for fisheries sustainability. Current Opinion in Environmental Sustainability, 2017, 29, 118-130.	6.3	19
123	Climate change impact on Canada's Pacific marine ecosystem: The current state of knowledge. Marine Policy, 2019, 104, 163-176.	3.2	19
124	Climate Change-Induced Emergence of Novel Biogeochemical Provinces. Frontiers in Marine Science, 2020, 7, .	2.5	18
125	Climate change impacts on living marine resources in the Eastern Tropical Pacific. Diversity and Distributions, 2021, 27, 65-81.	4.1	18
126	Time Discounting and the Overexploitation of Coral Reefs. Environmental and Resource Economics, 2015, 61, 91-114.	3.2	16

8

#	Article	IF	CITATIONS
127	Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean. Global Change Biology, 2021, 27, 1457-1469.	9.5	16
128	Spatial distribution of lifeâ€history traits and their response to environmental gradients across multiple marine taxa. Ecosphere, 2018, 9, e02460.	2.2	15
129	Contrasting Futures for Australia's Fisheries Stocks Under IPCC RCP8.5 Emissions – A Multi-Ecosystem Model Approach. Frontiers in Marine Science, 2020, 7, .	2.5	15
130	Fisheries subsidies and potential catch loss in SIDS Exclusive Economic Zones: food security implications. Environment and Development Economics, 2013, 18, 427-439.	1.5	14
131	Population metrics and movement of two sympatric carcharhinids: a comparison of the vulnerability of pelagic sharks of the southern Australian gulfs and shelves. Marine and Freshwater Research, 2013, 64, 20.	1.3	13
132	Estimating the economic loss of recent North Atlantic fisheries management. Progress in Oceanography, 2014, 129, 314-323.	3.2	13
133	Vulnerability of flatfish and their fisheries to climate change. Journal of Sea Research, 2018, 140, 1-10.	1.6	13
134	Potential changes in the distribution of suitable habitat for Pacific sardine (Sardinops sagax) under climate change scenarios. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 169-170, 104632.	1.4	13
135	Tracking industrial fishing activities in African waters from space. Fish and Fisheries, 2021, 22, 851-864.	5.3	13
136	A survey of alternative livelihood options for Hong Kong's fishers. International Journal of Social Economics, 2008, 35, 380-395.	1.9	12
137	Entering uncharted waters: Long-term dynamics of two data limited fish species, turbot and brill, in the North Sea. Journal of Sea Research, 2013, 84, 87-95.	1.6	12
138	Projecting global mariculture production and adaptation pathways under climate change. Global Change Biology, 2022, 28, 1315-1331.	9.5	12
139	Wondering about wandering whiting: Distribution of North Sea whiting between the 1920s and 2000s. Fisheries Research, 2013, 145, 54-65.	1.7	11
140	Observations, indicators and scenarios of biodiversity and ecosystem services change — a framework to support policy and decision-making. Current Opinion in Environmental Sustainability, 2017, 29, 198-206.	6.3	11
141	Comparing marine ecosystems of Laizhou and Haizhou Bays, China, using ecological indicators estimated from food web models. Journal of Marine Systems, 2020, 202, 103238.	2.1	11
142	Projecting changes in the distribution and maximum catch potential of warm water fishes under climate change scenarios in the Yellow Sea. Diversity and Distributions, 2020, 26, 806-817.	4.1	11
143	Impact of High Seas Closure on Food Security in Low Income Fish Dependent Countries. PLoS ONE, 2016, 11, e0168529.	2.5	10
144	Comparing model parameterizations of the biophysical impacts of ocean acidification to identify limitations and uncertainties. Ecological Modelling, 2018, 385, 1-11.	2.5	9

#	Article	IF	CITATIONS
145	Initial recovery of demersal fish communities in coastal waters of Hong Kong, South China, following a trawl ban. Reviews in Fish Biology and Fisheries, 2021, 31, 989-1007.	4.9	9
146	Effects of climate change and fishing on the Pearl River Estuary ecosystem and fisheries. Reviews in Fish Biology and Fisheries, 2019, 29, 861-875.	4.9	8
147	A fuzzy logic expert system for evaluating policy progress towards sustainability goals. Ambio, 2018, 47, 595-607.	5.5	7
148	Modelling spatiotemporal trends in range shifts of marine commercial fish species driven by climate change surrounding the Antarctic Peninsula. Science of the Total Environment, 2020, 737, 140258.	8.0	7
149	Ocean Acidification Amplifies Multi-Stressor Impacts on Global Marine Invertebrate Fisheries. Frontiers in Marine Science, 2021, 8, .	2.5	7
150	Socio-economic Impacts—Fisheries. Regional Climate Studies, 2016, , 375-395.	1.2	6
151	Species and Functional Dynamics of the Demersal Fish Community and Responses to Disturbances in the Pearl River Estuary. Frontiers in Marine Science, 0, 9, .	2.5	6
152	Scenarios for investigating the future of Canada's oceans and marine fisheries under environmental and socioeconomic change. Regional Environmental Change, 2017, 17, 619-633.	2.9	5
153	Marine biodiversity and ecosystem services: the large gloomy shadow of climate change. , 2019, , 79-85.		5
154	Changes of potential catches for North-East Atlantic small pelagic fisheries under climate change scenarios. Regional Environmental Change, 2020, 20, 1.	2.9	5
155	Modelling ocean acidification effects with life stage-specific responses alters spatiotemporal patterns of catch and revenues of American lobster, Homarus americanus. Scientific Reports, 2021, 11, 23330.	3.3	5
156	Ecosystem-based fisheries management in the face of climate change. , 2011, , 171-188.		4
157	Climate change, marine ecosystems and global fisheries. , 2017, , .		4
158	Predicting the future ocean: pathways to global ocean sustainability. , 2019, , 3-15.		4
159	Does a Trawl Ban Benefit Commercially Important Decapoda and Stomatopoda in Hong Kong?. Ecosystems, 2021, 24, 1157-1170.	3.4	4
160	Modelling the variation of demersal fish distribution in Yellow Sea under climate change. Journal of Oceanology and Limnology, 2022, 40, 1544-1555.	1.3	4
161	Linking observed changes in pelagic catches to temperature and oxygen in the Eastern Tropical Pacific. Fish and Fisheries, 2022, 23, 1371-1382.	5.3	4
162	Climate change effects on the economics and management of marine fisheries. , 2014, , .		3

Climate change effects on the economics and management of marine fisheries. , 2014, , . 162

#	Article	IF	CITATIONS
163	Response to removing biases in forecasts of fishery status. Journal of Bioeconomics, 2014, 16, 221-222.	3.3	3
164	Oceans and human health—navigating changes on Canada's coasts. Facets, 2020, 5, 1037-1070.	2.4	3
165	Temperature and oxygen supply shape the demersal community in a tropical Oxygen Minimum Zone. Environmental Biology of Fishes, 2022, 105, 1317-1333.	1.0	3
166	A palaeothermometer of ancient Indigenous fisheries reveals increases in mean temperature of the catch over five millennia. Environmental Biology of Fishes, 0, , .	1.0	3
167	Changing ocean systems: A short synthesis. , 2019, , 19-34.		2
168	Signature of climate-induced changes in seafood species served in restaurants. Environmental Biology of Fishes, 0, , 1.	1.0	2
169	Modelling the structure and functioning of an upwelling ecosystem in the Southern Taiwan Strait, China. Journal of Marine Systems, 2021, , 103666.	2.1	1
170	The Potential Economic Costs of the Overuse of Marine Fish Stocks. , 2013, , 171-191.		0
171	Managing Multiple Human Stressors in the Ocean. , 2013, , 277-299.		Ο
172	Marine Systems, Food Security, and Future Earth. , 0, , 296-310.		0