List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patient-Reported Outcomes: Descriptors of Nociceptive and Neuropathic Pain and Barriers to Effective Pain Management in Adult Outpatients With Sickle Cell Disease. Journal of the National Medical Association, 2010, 102, 18-27.	0.8	152
2	Nonmyeloablative Stem Cell Transplantation with Alemtuzumab/Low-Dose Irradiation to Cure and Improve theÂQuality of Life of Adults with Sickle Cell Disease. Biology of Blood and Marrow Transplantation, 2016, 22, 441-448.	2.0	111
3	Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Medicine, 2017, 14, e1002382.	8.4	107
4	COVIDâ€19 infection in patients with sickle cell disease. British Journal of Haematology, 2020, 189, 851-852.	2.5	90
5	Safety and Utility of Quantitative Sensory Testing among Adults with Sickle Cell Disease: Indicators of Neuropathic Pain?. Pain Practice, 2016, 16, 282-293.	1.9	70
6	Neurobiological Mechanisms of Pain in Sickle Cell Disease. Hematology American Society of Hematology Education Program, 2010, 2010, 403-408.	2.5	58
7	Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease. Experimental Hematology, 2017, 50, 46-52.	0.4	52
8	Haploidentical Peripheral Blood Stem Cell Transplantation Demonstrates Stable Engraftment in Adults with Sickle Cell Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 1759-1765.	2.0	50
9	APOL1 , α-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia. Haematologica, 2017, 102, e1-e6.	3.5	47
10	Cognitive Testing of PAINReportIt in Adult African Americans With Sickle Cell Disease. CIN - Computers Informatics Nursing, 2010, 28, 141-150.	0.5	43
11	Mechanism-driven phase I translational study of trifluoperazine in adults with sickle cell disease. European Journal of Pharmacology, 2014, 723, 419-424.	3.5	38
12	Outpatient Pain Predicts Subsequent One-Year Acute Health Care Utilization Among Adults With Sickle Cell Disease. Journal of Pain and Symptom Management, 2014, 48, 65-74.	1.2	37
13	Dopamine D3 Receptor Ser9Gly and Catechol-O-Methyltransferase Val158Met Polymorphisms and Acute Pain in Sickle Cell Disease. Anesthesia and Analgesia, 2014, 119, 1201-1207.	2.2	33
14	Perceived Injustice Predicts Stress and Pain in Adults with Sickle Cell Disease. Pain Management Nursing, 2015, 16, 294-306.	0.9	31
15	Association of Cardiomyopathy With <i>MYBPC3</i> D389V and <i>MYBPC3^{Δ25bp}</i> Intronic Deletion in South Asian Descendants. JAMA Cardiology, 2018, 3, 481.	6.1	31
16	CaMKIIα underlies spontaneous and evoked pain behaviors in Berkeley sickle cell transgenic mice. Pain, 2016, 157, 2798-2806.	4.2	30
17	Reproductive Health CHOICES for Young Adults with Sickle Cell Disease or Trait: Randomized Controlled Trial Outcomes over Two Years. Journal of Genetic Counseling, 2016, 25, 325-336.	1.6	29
18	Clinical, laboratory, and genetic risk factors for thrombosis in sickle cell disease. Blood Advances, 2020, 4, 1978-1986.	5.2	28

#	Article	IF	CITATIONS
19	Evaluation of the SCKnowIQ Tool and Reproductive CHOICES Intervention Among Young Adults With Sickle Cell Disease or Sickle Cell Trait. Clinical Nursing Research, 2014, 23, 421-441.	1.6	25
20	A Case Series: Chiari Malformation and Sickle Cell Disease. Blood, 2012, 120, 4772-4772.	1.4	25
21	Patterns of opioid use in sickle cell disease. American Journal of Hematology, 2016, 91, 1102-1106.	4.1	24
22	Composite Pain Index: Reliability, Validity, and Sensitivity of a Patient-Reported Outcome for Research. Pain Medicine, 2015, 16, 1341-1348.	1.9	23
23	Pain Barriers. Nursing Research, 2010, 59, 93-101.	1.7	22
24	A randomized controlled pilot study feasibility of a tabletâ€based guided audioâ€visual relaxation intervention for reducing stress and pain in adults with sickle cell disease. Journal of Advanced Nursing, 2016, 72, 1452-1463.	3.3	21
25	Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease. Pharmacogenomics, 2018, 19, 401-411.	1.3	21
26	Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons. Blood, 2017, 129, 260-263.	1.4	20
27	Management of Sickle Cell Pain Using Pregabalin: A Pilot Study. Pain Management Nursing, 2017, 18, 391-400.	0.9	20
28	Opioid doses and acute care utilization outcomes for adults with sickle cell disease: ED versus acute care unit. American Journal of Emergency Medicine, 2018, 36, 88-92.	1.6	18
29	Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Experimental Hematology, 2018, 67, 60-64.e2.	0.4	17
30	A Stepped-Wedge Randomized Controlled Trial: Effects of eHealth Interventions for Pain Control Among Adults With Cancer in Hospice. Journal of Pain and Symptom Management, 2020, 59, 626-636.	1.2	17
31	Tetrahydrouridine, cytidine analogues, and hemoglobin F. American Journal of Hematology, 1985, 18, 283-288.	4.1	16
32	Risk factors for vitamin D deficiency in sickle cell disease. British Journal of Haematology, 2018, 181, 828-835.	2.5	16
33	Genetic variants of GCH1 associate with chronic and acute crisis pain in African Americans with sickle cell disease. Experimental Hematology, 2018, 66, 42-49.	0.4	16
34	Prevalence of pain-related single nucleotide polymorphisms in patients of African origin with sickle cell disease. Pharmacogenomics, 2015, 16, 1795-1806.	1.3	15
35	Sensitivities to Thermal and Mechanical Stimuli: Adults With Sickle Cell Disease Compared to Healthy, Pain-Free African American Controls. Journal of Pain, 2020, 21, 957-967.	1.4	15
36	Patients and Caregivers Rate the PAINReportIt Wireless Internet-Enabled Tablet as a Method for Reporting Pain During End-of-Life Cancer Care. Cancer Nursing, 2020, 43, 419-424.	1.5	14

#	Article	IF	CITATIONS
37	Improved health care utilization and costs in transplanted versus non-transplanted adults with sickle cell disease. PLoS ONE, 2020, 15, e0229710.	2.5	14
38	Platelets decline during <scp>V</scp> asoâ€occlusive crisis as a predictor of acute chest syndrome in sickle cell disease. American Journal of Hematology, 2015, 90, E228-9.	4.1	12
39	Satisfied or not satisfied: pain experiences of patients with sickle cell disease. Journal of Advanced Nursing, 2016, 72, 1398-1408.	3.3	12
40	Perception of young adults with sickle cell disease or sickle cell trait about participation in the <scp>CHOICES</scp> randomized controlled trial. Journal of Advanced Nursing, 2016, 72, 1430-1440.	3.3	12
41	Performance validity testing in a clinical sample of adults with sickle cell disease. Clinical Neuropsychologist, 2018, 32, 81-97.	2.3	12
42	Glucocorticoid receptor single nucleotide polymorphisms are associated with acute crisis pain in sickle cell disease. Pharmacogenomics, 2018, 19, 1003-1011.	1.3	12
43	Acupuncture for chronic pain in adults with sickle cell disease: a mixed-methods pilot study. Acupuncture in Medicine, 2021, 39, 612-618.	1.0	12
44	A QSTâ€based Pain Phenotype in Adults With Sickle Cell Disease: Sensitivity and Specificity of Quality Descriptors. Pain Practice, 2020, 20, 168-178.	1.9	11
45	Beta2-Adrenergic Receptor Polymorphisms and Haplotypes Associate With Chronic Pain in Sickle Cell Disease. Frontiers in Pharmacology, 2019, 10, 84.	3.5	10
46	<i>IL1A</i> rs1800587 associates with chronic noncrisis pain in sickle cell disease. Pharmacogenomics, 2016, 17, 1999-2006.	1.3	9
47	Erythropoiesisâ€stimulating agents in sickle cell anaemia. British Journal of Haematology, 2018, 182, 602-605.	2.5	9
48	Keys to Recruiting and Retaining Seriously III African Americans With Sickle Cell Disease in Longitudinal Studies: Respectful Engagement and Persistence. American Journal of Hospice and Palliative Medicine, 2020, 37, 123-128.	1.4	9
49	Integration of neuropsychology services in a sickle cell clinic and subsequent healthcare use for pain crises. Clinical Neuropsychologist, 2019, 33, 1195-1211.	2.3	8
50	Differences in Sensory Pain, Expectation, and Satisfaction Reported by Outpatients with Cancer or Sickle Cell Disease. Pain Management Nursing, 2018, 19, 322-332.	0.9	7
51	Program expansion of a day hospital dedicated to manage sickle cell pain. American Journal of Hematology, 2018, 93, E20-E21.	4.1	7
52	Bedside ultrasound as a predictive tool for acute chest syndrome in sickle cell patients. American Journal of Emergency Medicine, 2018, 36, 1855-1861.	1.6	7
53	Thermal and mechanical quantitative sensory testing values among healthy African American adults. Journal of Pain Research, 2019, Volume 12, 2511-2527.	2.0	7
54	"Maximum tolerated dose―vs "fixed lowâ€dose―hydroxyurea for treatment of adults with sickle cell anemia. American Journal of Hematology, 2019, 94, E112-E115.	4.1	7

#	Article	IF	CITATIONS
55	Conjunctival microvascular hemodynamics following vaso-occlusive crisis in sickle cell disease. Clinical Hemorheology and Microcirculation, 2016, 62, 359-367.	1.7	6
56	Toward understanding familyâ€related characteristics of young adults with sickleâ€cell disease or sickleâ€cell trait in the USA. Journal of Clinical Nursing, 2016, 25, 1587-1597.	3.0	6
57	Coping with Pain in the Face of Healthcare Injustice in Patients with Sickle Cell Disease. Journal of Immigrant and Minority Health, 2017, 19, 1449-1456.	1.6	6
58	Pain, symptom distress, and pain barriers by age among patients with cancer receiving hospice care: Comparison of baseline data. Journal of Geriatric Oncology, 2021, 12, 1068-1075.	1.0	6
59	Does cold hypersensitivity increase with age in sickle cell disease?. Pain, 2014, 155, 2439-2440.	4.2	5
60	Use of metformin in patients with sickle cell disease. American Journal of Hematology, 2019, 94, E13-E15.	4.1	5
61	Randomized clinical trial of computerized PAINRelieveIt® for patients with sickle cell disease: PAINReportIt® and PAINUCope®. Patient Education and Counseling, 2020, 103, 136-144.	2.2	5
62	S100B single nucleotide polymorphisms exhibit sex-specific associations with chronic pain in sickle cell disease in a largely African-American cohort. PLoS ONE, 2020, 15, e0232721.	2.5	5
63	PhenylethanolamineN-methyltransferase gene polymorphisms associate with crisis pain in sickle cell disease patients. Pharmacogenomics, 2020, 21, 269-278.	1.3	5
64	Voxelotor and albuminuria in adults with sickle cell anaemia. British Journal of Haematology, 2022, , .	2.5	5
65	Conjunctival and pulmonary hemodynamic properties in sickle cell disease subjects with and without pulmonary hypertension. Clinical Case Reports (discontinued), 2015, 3, 1038-1041.	0.5	4
66	Increased vancomycin dosing requirements in sickle cell disease due to hyperfiltration-dependent and independent pathways. Haematologica, 2017, 102, e282-e284.	3.5	4
67	Implementing the PAIN <i>Relieve</i> It Randomized Controlled Trial in Hospice Care: Mechanisms for Success and Meeting PCORI Methodology Standards. Western Journal of Nursing Research, 2017, 39, 924-941.	1.4	4
68	The AVPR1A Gene and Its Single Nucleotide Polymorphism rs10877969: A Literature Review of Associations with Health Conditions and Pain. Pain Management Nursing, 2018, 19, 430-444.	0.9	4
69	Kidney ultrasound findings according to kidney function in sickle cell anemia. American Journal of Hematology, 2019, 94, E288-E291.	4.1	4
70	Vasopressin SNP pain factors and stress in sickle cell disease. PLoS ONE, 2019, 14, e0224886.	2.5	4
71	Early Detection of Acute Chest Syndrome Through Electronic Recording and Analysis of Auscultatory Percussion. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8, 1-8.	3.7	4
72	The Tet Dioxygenase Co-Factor Ascorbic Acid Reduces DNA Methylation and Increases Expression of the Î ³ -Globin Gene and Acts in a Combinatorial Manner with HbF-Inducing Drugs Targeting Repressive Epigenetic Modifications. Blood, 2014, 124, 334-334.	1.4	4

#	Article	IF	CITATIONS
73	Chronic opioid use can be reduced or discontinued after haematopoietic stem cell transplantation for sickle cell disease. British Journal of Haematology, 2020, 191, e70-e72.	2.5	3
74	Chronic Opioid Use Pattern in Adult Patients with Sickle Cell Disease. Blood, 2015, 126, 3400-3400.	1.4	3
75	Antimicrobial resistance is a risk factor for mortality in adults with sickle cell disease. Haematologica, 2021, 106, 1745-1748.	3.5	3
76	HUMAN STUDY <i>COMT</i> and <i>DRD3</i> haplotype-associated pain intensity and acute care utilization in adult sickle cell disease. Experimental Biology and Medicine, 2022, 247, 1601-1608.	2.4	3
77	Effects of reninâ€angiotensin blockade and APOL1 on kidney function in sickle cell disease. EJHaem, 2021, 2, 483-484.	1.0	2
78	Phase 1 Evaluation of Oral Tetrahydrouridine-Decitabine As Non-Cytotoxic Epigenetic Disease Modification for Sickle Cell Disease. Blood, 2016, 128, 124-124.	1.4	2
79	Sociodemographic and Clinical Characteristics Associated With Worst Pain Intensity Among Cancer Patients. Pain Management Nursing, 2022, 23, 424-429.	0.9	2
80	Utility of the revised cardiac risk index for predicting postsurgical morbidity in Hb SC and Hb Sβ+â€ŧhalassemia sickle cell disease. American Journal of Hematology, 2016, 91, E316-7.	4.1	1
81	High inpatient dose of opioid at discharge compared to home dose predicts readmission risk in sickle cell disease. American Journal of Hematology, 2019, 94, E5-E7.	4.1	1
82	Epigenetic regulation of hemoglobin switching in non-human primates. Seminars in Hematology, 2021, 58, 10-14.	3.4	1
83	Initial Experience with the IMPROVE Trial-a Phase III Analgesic Trial for Hospitalized Sickle Cell Painful Episodes. Blood, 2010, 116, 2667-2667.	1.4	1
84	Clinical Efficacy and Safety of Erythroid Stimulating Agents in Sickle Cell Disease. Blood, 2012, 120, 3218-3218.	1.4	1
85	The Impact of Selenium Deficiency on a Sickle Cell Disease Mouse Model. Blood, 2018, 132, 3645-3645.	1.4	1
86	Biomarker Association with Hypertension in Mild Versus Severe Sickle Cell Disease Genotypes of a Single Center Cohort, in Comparison with African Americans from the Nhanes Study. Blood, 2021, 138, 2051-2051.	1.4	1
87	Defining and Predicting Rapid Egfr Decline in Sickle Cell Disease. Blood, 2021, 138, 122-122.	1.4	1
88	Cathepsin B, a Negative Regulator of Autophagy, Identified As a Novel Therapeutic Drug Target in Sickle Cell Disease. Blood, 2020, 136, 32-32.	1.4	1
89	Outcomes in Vaso-Occlusive Crisis Treatment in the Emergency Department Vs. Acute Care Observation Center. Blood, 2020, 136, 22-23.	1.4	1
90	Response to Therapy with Imatinib Mesylate in Patients with CML Is Poor in Non-Caucasian Patients Blood, 2004, 104, 2937-2937.	1.4	0

6

#	Article	IF	CITATIONS
91	A Comparison of Two Pain Assessment Tools, the Adolescent Pediatric Pain Tool and PAINReportIt and Use of the Composite Pain Index in Sickle Cell Disease. Blood, 2010, 116, 2648-2648.	1.4	0
92	Fever In Hospitalized Adult Patients with Sickle Cell Disease. Blood, 2010, 116, 2652-2652.	1.4	0
93	Clinical and Laboratory Predictors for Renal Damage in Sickle Cell Disease. Blood, 2012, 120, 3252-3252.	1.4	Ο
94	Hemoglobinuria Is a Risk Factor For Kidney Disease Progression In Sickle Cell Anemia. Blood, 2013, 122, 996-996.	1.4	0
95	Utility of the Revised Cardiac Index Score for Predicting Post-Surgical Outcome in Hb SC or SBeta+ -Thalassemia Sickle Cell Disease. Blood, 2015, 126, 3413-3413.	1.4	0
96	Impact of a Dedicated Sickle Cell Acute Care Observation Unit on Rate of Hospital Admission for Acute Pain Crisis. Blood, 2015, 126, 4584-4584.	1.4	0
97	Efficacy and Safety of Long-Term Treatment with the LSD1 Inhibitor RN-1 to Increase HbF in Normal, Non-Anemic Baboons. Blood, 2016, 128, 324-324.	1.4	Ο
98	<i>HMOX1</i> and Acute Kidney Injury in Sickle Cell Anemia. Blood, 2017, 130, 686-686.	1.4	0
99	Protein Phosphorylation Mechanisms Underlying Chronic Pain in Sickle Cell Disease. Blood, 2018, 132, 3646-3646.	1.4	Ο
100	Long-Term Stability of the Adult Sickle Cell Quality of Life Measure (ASCQ-Me) . Blood, 2018, 132, 3576-3576.	1.4	0
101	Effect of the NAMPT Activator P7C3-A20 on Î ³ -Clobin Expression in Baboon CD34+ Erythroid Cell Cultures. Blood, 2021, 138, 961-961.	1.4	Ο
102	Clinical and Biomarker Predictors for Avascular Necrosis in Sickle Cell Disease. Blood, 2021, 138, 3091-3091.	1.4	0
103	Cancer Incidence and Chemotherapy Tolerance in Patients with Sickle Cell Disease. Blood, 2020, 136, 24-25.	1.4	Ο
104	Effects of Hydroxyurea and Renin-Angiotensin Blockade on Kidney Function in Sickle Cell Disease. Blood, 2020, 136, 21-22.	1.4	0
105	Combinatorial Administration of Pharmacological Inhibitors Targeting DNMT1 and KDM1A Produces Synergistic and Additive Increases in F Retiulocytes and Î ³ -Globin Expression in Normal Baboons. Blood, 2020, 136, 5-5.	1.4	Ο
106	Effect of Nicotinamide, 1-Methylnicotinamide, and N'-Methylnicotinamide on Erythroid Colony Formation and γ-Globin Expression in Cultured Baboon CD34+ Cells. Blood, 2020, 136, 4-5.	1.4	0
107	Vaso-Occlusive Events Precipitated By Intraarticular Steroid Injections in Patients with Sickle Cell Disease. Blood, 2020, 136, 2-3.	1.4	0
108	Lower Apache II Score and Exchange Transfusions Predict Better Outcomes in the Intensive Care Unit for Patients with Sickle Cell Disease. Blood, 2020, 136, 18-19.	1.4	0

#	Article	IF	CITATIONS
109	Correction of Point-of-Care International Normalized Ratio (INR) Values in Patients with Sickle Cell Disease. Blood, 2020, 136, 34-35.	1.4	0
110	Complications in Pregnancy of Sickle Cell Disease. Blood, 2020, 136, 32-33.	1.4	0
111	Title is missing!. , 2020, 15, e0229710.		0
112	Title is missing!. , 2020, 15, e0229710.		0
113	Title is missing!. , 2020, 15, e0229710.		0
114	Title is missing!. , 2020, 15, e0229710.		0