Yang Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8915691/yang-zhang-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32	512	13	22
papers	citations	h-index	g-index
36	781	4.2 avg, IF	4.19
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
32	Electronic and magnetic properties of quasi-one-dimensional osmium halide OsCl4. <i>Applied Physics Letters</i> , 2022 , 120, 023101	3.4	O
31	Orbital ordering in the layered perovskite material CsVF4. Physical Review Materials, 2021, 5,	3.2	3
30	Peierls transition, ferroelectricity, and spin-singlet formation in monolayer VOI2. <i>Physical Review B</i> , 2021 , 103,	3.3	9
29	Noncollinear ferrielectricity and morphotropic phase boundary in monolayer GeS. <i>Physical Review B</i> , 2021 , 103,	3.3	4
28	Origin of the magnetic and orbital ordering in B r2CrO4. <i>Physical Review B</i> , 2021 , 103,	3.3	4
27	Origin of Insulating Ferromagnetism in Iron Oxychalcogenide Ce_{2}O_{2}FeSe_{2}. <i>Physical Review Letters</i> , 2021 , 127, 077204	7.4	2
26	Orbital-selective Peierls phase in the metallic dimerized chain MoOCl2. <i>Physical Review B</i> , 2021 , 104,	3.3	3
25	Magnetic states of the quasi-one-dimensional iron chalcogenide Ba2FeS3. <i>Physical Review B</i> , 2021 , 104,	3.3	1
24	Similarities and differences between nickelate and cuprate films grown on a SrTiO3 substrate. <i>Physical Review B</i> , 2020 , 102,	3.3	18
23	First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound (TaSe4)2I. <i>Physical Review B</i> , 2020 , 101,	3.3	15
22	Antiferromagnetism of Double Molybdate LiFe(MoO). <i>Inorganic Chemistry</i> , 2020 , 59, 8127-8133	5.1	5
21	Iron telluride ladder compounds: Predicting the structural and magnetic properties of BaFe2Te3. <i>Physical Review B</i> , 2020 , 101,	3.3	10
20	Direct visualization of irreducible ferrielectricity in crystals. <i>Npj Quantum Materials</i> , 2020 , 5,	5	3
19	Electronic Transport Evidence for Topological Nodal-Line Semimetals of ZrGeSe Single Crystals. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 869-876	4	13
18	Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. <i>Science Advances</i> , 2019 , 5, eaav3780	14.3	74
17	Frustrated Dipole Order Induces Noncollinear Proper Ferrielectricity in Two Dimensions. <i>Physical Review Letters</i> , 2019 , 123, 067601	7.4	30
16	Quasi-one-dimensional ferroelectricity and piezoelectricity in WOX4 halogens. <i>Physical Review Materials</i> , 2019 , 3,	3.2	9

LIST OF PUBLICATIONS

Tuning Magnetism in Layered Magnet VI3: A Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 30545-30550	3.8	23
Magnetic states of iron-based two-leg ladder tellurides. <i>Physical Review B</i> , 2019 , 100,	3.3	13
Sequential structural and antiferromagnetic transitions in BaFe2Se3 under pressure. <i>Physical Review B</i> , 2018 , 97,	3.3	27
Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. <i>Applied Physics Letters</i> , 2018 , 113, 022902	3.4	35
Type-II Multiferroic HfVCF MXene Monolayer with High Transition Temperature. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9768-9773	16.4	105
New iron-based multiferroics with improper ferroelectricity. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 243002	3	4
Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
Magnetic and electronic properties of La MO and possible polaron formation in hole-doped La MO (M = Ru and Os). <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 095803	1.8	
Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles. <i>Physical Review B</i> , 2017 , 96,	3.3	19
Cycloidal magnetism driven ferroelectricity in double tungstate LiFe(WO4)2. <i>Physical Review B</i> , 2017 , 95,	3.3	14
Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders AFe2X3 (A=Ba,K; X=S,Se). <i>Physical Review B</i> , 2017 , 95,	3.3	31
Exchange striction driven magnetodielectric effect and potential photovoltaic effect in polar CaOFeS. <i>Physical Review Materials</i> , 2017 , 1,	3.2	11
Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. <i>Physical Review Materials</i> , 2017 , 1,	3.2	13
Block antiferromagnetism and possible ferroelectricity in KFe2Se2. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 757-761	2.5	5
Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3. <i>Frontiers of Physics</i> , 2016 , 11, 1	3.7	4
	Magnetic states of iron-based two-leg ladder tellurides. <i>Physical Review B</i> , 2019 , 100, Sequential structural and antiferromagnetic transitions in BaFe2Se3 under pressure. <i>Physical Review B</i> , 2018 , 97, Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. <i>Applied Physics Letters</i> , 2018 , 113, 022902 Type-II Multiferroic HfVCF MXene Monolayer with High Transition Temperature. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9768-9773 New iron-based multiferroics with improper ferroelectricity. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 243002 Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer. <i>Physical Review Materials</i> , 2018 , 2, Magnetic and electronic properties of La MO and possible polaron formation in hole-doped La MO (M = Ru and Os). <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 095803 Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles. <i>Physical Review B</i> , 2017 , 96, Cycloidal magnetism driven ferroelectricity in double tungstate LiFe(WO4)2. <i>Physical Review B</i> , 2017 , 95, Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders AFe2X3 (A=Ba,K; X=S,Se). <i>Physical Review B</i> , 2017 , 95, Exchange striction driven magnetodielectric effect and potential photovoltaic effect in polar CaOFeS. <i>Physical Review Materials</i> , 2017 , 1, Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. <i>Physical Review Materials</i> , 2017 , 1, Block antiferromagnetism and possible ferroelectricity in KFe2Se2. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 757-761	Magnetic states of iron-based two-leg ladder tellurides. <i>Physical Review B</i> , 2019 , 100, 3.3 Sequential structural and antiferromagnetic transitions in BaFe2Se3 under pressure. <i>Physical Review B</i> , 2018 , 97, Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. <i>Applied Physics Letters</i> , 2018 , 113, 022902 Type-II Multiferroic HfVCF MXene Monolayer with High Transition Temperature. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9768-9773 New iron-based multiferroics with improper ferroelectricity. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 243002 Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer. <i>Physical Review Materials</i> , 2018 , 2, Magnetic and electronic properties of La MO and possible polaron formation in hole-doped La MO (M = Ru and Os). <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 095803 Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles. <i>Physical Review B</i> , 2017 , 96, Cycloidal magnetism driven ferroelectricity in double tungstate LiFe(WO4)2. <i>Physical Review B</i> , 2017 , 95, Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders AFe2X3 (A=Ba,K; X=S,Se). <i>Physical Review B</i> , 2017 , 95, Exchange striction driven magnetodielectric effect and potential photovoltaic effect in polar CaOFes. <i>Physical Review Materials</i> , 2017 , 1, Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. <i>Physical Review Materials</i> , 2017 , 1, Block antiferromagnetism and possible ferroelectricity in KFe2Se2. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 757-761