Georgios Nicolaou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Stability of the Electron Strahl against the Oblique Fast-magnetosonic/Whistler Instability in the Inner Heliosphere. Astrophysical Journal Letters, 2022, 926, L26.	8.3	8
2	The Kinetic Expansion of Solar-wind Electrons: Transport Theory and Predictions for the Very Inner Heliosphere. Astrophysical Journal, 2022, 927, 162.	4.5	5
3	Radial Evolution of Thermal and Suprathermal Electron Populations in the Slow Solar Wind from 0.13 to 0.5 au: Parker Solar Probe Observations. Astrophysical Journal, 2022, 931, 118.	4.5	15
4	Relationship between Polytropic Index and Temperature Anisotropy in Space Plasmas. Astrophysical Journal, 2021, 909, 127.	4.5	14
5	Anisotropic Kappa Distributions. I. Formulation Based on Particle Correlations. Astrophysical Journal, Supplement Series, 2021, 253, 16.	7.7	9
6	Matching Temporal Signatures of Solar Features to Their Corresponding Solar-Wind Outflows. Solar Physics, 2021, 296, 1.	2.5	3
7	Estimating the Polytropic Indices of Plasmas with Partial Temperature Tensor Measurements: Application to Solar Wind Protons at ~1 au. Applied Sciences (Switzerland), 2021, 11, 4019.	2.5	2
8	Three-dimensional magnetic reconnection in particle-in-cell simulations of anisotropic plasma turbulence. Journal of Plasma Physics, 2021, 87, .	2.1	19
9	Significance of Bernoulli Integral Terms for the Solar Wind Protons at 1 au. Applied Sciences (Switzerland), 2021, 11, 4643.	2.5	2
10	Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, L1.	5.1	43
11	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029426.	2.4	11
12	First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument on board Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A14.	5.1	13
13	Deriving the bulk properties of solar wind electrons observed by Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A10.	5.1	6
14	Solar Orbiter observations of the structure of reconnection outflow layers in the solar wind. Astronomy and Astrophysics, 2021, 656, L8.	5.1	5
15	Breathing of the Heliosphere. Astrophysical Journal, 2021, 922, 250.	4.5	7
16	Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O ⁺ and S ²⁺ . Journal of Geophysical Research: Space Physics, 2020, 125, e2018JA026169.	2.4	31
17	Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA). Applied Sciences (Switzerland), 2020, 10, 8483.	2.5	4
18	Comparisons Between Jupiter's Xâ€ray, UV and Radio Emissions and Inâ€Situ Solar Wind Measurements During 2007. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027222.	2.4	24

GEORGIOS NICOLAOU

#	Article	IF	CITATIONS
19	Statistical Uncertainties of Space Plasma Properties Described by Kappa Distributions. Entropy, 2020, 22, 541.	2.2	7
20	On the Determination of Kappa Distribution Functions from Space Plasma Observations. Entropy, 2020, 22, 212.	2.2	9
21	Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy, 2020, 22, 103.	2.2	12
22	Evaluating the Performance of a Plasma Analyzer for a Space Weather Monitor Mission Concept. Space Weather, 2020, 18, e2020SW002559.	3.7	9
23	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3.	5.1	67
24	Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe. Astrophysical Journal, 2020, 901, 26.	4.5	21
25	On the Calculation of the Effective Polytropic Index in Space Plasmas. Entropy, 2019, 21, 997.	2.2	11
26	Long-term Correlations of Polytropic Indices with Kappa Distributions in Solar Wind Plasma near 1 au. Astrophysical Journal, 2019, 884, 52.	4.5	25
27	The Fluid-like and Kinetic Behavior of Kinetic Alfvén Turbulence in Space Plasma. Astrophysical Journal, 2019, 870, 106.	4.5	18
28	The Impact of Turbulent Solar Wind Fluctuations on Solar Orbiter Plasma Proton Measurements. Astrophysical Journal, 2019, 886, 101.	4.5	18
29	Ions Accelerated by Sounderâ€Plasma Interaction as Observed by Mars Express. Journal of Geophysical Research: Space Physics, 2018, 123, 9802-9814.	2.4	5
30	Determining the Kappa Distributions of Space Plasmas from Observations in a Limited Energy Range. Astrophysical Journal, 2018, 864, 3.	4.5	32
31	Jovian deep magnetotail composition and structure. Journal of Geophysical Research: Space Physics, 2017, 122, 1763-1777.	2.4	13
32	Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio. Astrophysical Journal, 2017, 838, 7.	4.5	13
33	Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions. Astrophysics and Space Science, 2016, 361, 1.	1.4	33
34	Investigation of the influence of surface composition on the charge state distribution of â^1⁄4keV hydrogen exiting thin carbon foils for space plasma instrumentation. Advances in Space Research, 2016, 57, 2420-2426.	2.6	4
35	THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au. Astrophysical Journal, Supplement Series, 2016, 223, 19.	7.7	39
36	Semi-empirical relationships for the energy loss and straggling of 1–50 keV hydrogen ions passing through thin carbon foils. Nuclear Instruments & Methods in Physics Research B, 2015, 359, 115-119.	1.4	16

GEORGIOS NICOLAOU

#	Article	IF	CITATIONS
37	Energy loss and straggling of 1–50 keV H, He, C, N, and O ions passing through few layer graphene. Nuclear Instruments & Methods in Physics Research B, 2015, 358, 223-228.	1.4	5
38	Plasma properties in the deep jovian magnetotail. Planetary and Space Science, 2015, 119, 222-232.	1.7	27
39	Jupiter's deep magnetotail boundary layer. Planetary and Space Science, 2015, 111, 116-125.	1.7	22
40	Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation. Review of Scientific Instruments, 2014, 85, 033302.	1.3	19
41	Charge state of â^¼1 to 50ÂkeV ions after passing through graphene and ultrathin carbon foils. Optical Engineering, 2014, 53, 024101.	1.0	30
42	Long-Term Variability of the Polytropic Index of Solar Wind Protons at 1 AU. Solar Physics, 2014, 289, 1371-1378.	2.5	55
43	Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. Journal of Geophysical Research: Space Physics, 2014, 119, 3463-3479.	2.4	41
44	High-cadence measurements of electron pitch-angle distributions from Solar Orbiter SWA-EAS burst mode operations. Astronomy and Astrophysics, 0, , .	5.1	5
45	Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme. Experimental Astronomy, 0, , 1.	3.7	1
46	Resolving Space Plasma Species With Electrostatic Analyzers. Frontiers in Astronomy and Space Sciences, 0, 9, .	2.8	1