
Magdalena Krulova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance. Stem Cell Reviews and Reports, 2022, 18, 2365-2375.	1.7	1
2	Xenogeneic Sertoli cells modulate immune response in an evolutionary distant mouse model through the production of interleukinâ€10 and PDâ€1 ligands expression. Xenotransplantation, 2022, , e12742.	1.6	1
3	The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients. Stem Cell Reviews and Reports, 2021, 17, 1420-1428.	1.7	3
4	Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 2021, 17, 1905-1916.	1.7	10
5	Interleukin-10 production by B cells is regulated by cytokines, but independently of GATA-3 or FoxP3 expression. Cellular Immunology, 2020, 347, 103987.	1.4	4
6	The Immunomodulatory Potential of Mesenchymal Stem Cells in a Retinal Inflammatory Environment. Stem Cell Reviews and Reports, 2019, 15, 880-891.	1.7	17
7	Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of <i>Xenopus tropicalis</i> Immature Sertoli Cells. Stem Cells International, 2019, 2019, 1-16.	1.2	3
8	Kinetics of Helios(+) and Helios(â^') T regulatory cell subsets in the circulation of healthy pregnant women. Scandinavian Journal of Immunology, 2019, 89, e12754.	1.3	5
9	The interconnection between cytokeratin and cell membrane-bound β-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes. Biology Open, 2019, 8, .	0.6	2
10	Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells from Patients with Amyotrophic Lateral Sclerosis and Healthy Donors. Journal of NeuroImmune Pharmacology, 2019, 14, 215-225.	2.1	9
11	Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clinical Science, 2019, 133, 2143-2157.	1.8	12
12	Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World Journal of Stem Cells, 2019, 11, 957-967.	1.3	23
13	The effect of clinically relevant doses of immunosuppressive drugs on human mesenchymal stem cells. Biomedicine and Pharmacotherapy, 2018, 97, 402-411.	2.5	20
14	The Impact of Morphine on the Characteristics and Function Properties of Human Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2018, 14, 801-811.	5.6	18
15	A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1456-1465.	1.3	27
16	The Identification of Interferon-Î ³ as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells. Stem Cells and Development, 2017, 26, 1399-1408.	1.1	5
17	Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations. Stem Cell Reviews and Reports, 2017, 13, 104-115.	5.6	28
18	Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. PLoS ONE, 2017, 12, e0184870.	1.1	5

Magdalena Krulova

#	Article	IF	CITATIONS
19	The Supportive Role of Insulin-Like Growth Factor-I in the Differentiation of Murine Mesenchymal Stem Cells into Corneal-Like Cells. Stem Cells and Development, 2016, 25, 874-881.	1.1	21
20	Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Reviews and Reports, 2016, 12, 654-663.	5.6	28
21	Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells. Immunobiology, 2016, 221, 129-136.	0.8	32
22	Modulation of the Early Inflammatory Microenvironment in the Alkali-Burned Eye by Systemically Administered Interferon-Î ³ -Treated Mesenchymal Stromal Cells. Stem Cells and Development, 2014, 23, 2490-2500.	1.1	29
23	Distinct cytokines balance the development of regulatory <scp>T</scp> cells and interleukinâ€10â€producing regulatory <scp>B</scp> cells. Immunology, 2014, 141, 577-586.	2.0	21
24	Common and small molecules as the ultimate regulatory and effector mediators of antigen-specific transplantation reactions. World Journal of Transplantation, 2013, 3, 54.	0.6	0
25	Mesenchymal stem cells as an alternative source of stem cells for ocular surface regeneration. Acta Ophthalmologica, 2013, 91, 0-0.	0.6	Ο
26	The Role of Mouse Mesenchymal Stem Cells in Differentiation of Naive T-Cells into Anti-Inflammatory Regulatory T-Cell or Proinflammatory Helper T-Cell 17 Population. Stem Cells and Development, 2012, 21, 901-910.	1.1	101
27	The Key Role of Insulin-Like Growth Factor I in Limbal Stem Cell Differentiation and the Corneal Wound-Healing Process. Stem Cells and Development, 2012, 21, 3341-3350.	1.1	67
28	Graft survival and cytokine production profile after limbal transplantation in the experimental mouse model. Transplant Immunology, 2011, 24, 189-194.	0.6	11
29	Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. Journal of Controlled Release, 2011, 156, 406-412.	4.8	44
30	Treatment of Ocular Surface Injuries by Limbal and Mesenchymal Stem Cells Growing on Nanofiber Scaffolds. Cell Transplantation, 2010, 19, 1281-1290.	1.2	79
31	Loci controlling lymphocyte production of interferon Î ³ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunology, Immunotherapy, 2010, 59, 203-213.	2.0	10
32	Immunoregulatory Properties of Mouse Limbal Stem Cells. Journal of Immunology, 2010, 184, 2124-2129.	0.4	26
33	Distinct regulatory roles of transforming growth factorâ€Î² and interleukinâ€4 in the development and maintenance of natural and induced CD4 ⁺ CD25 ⁺ Foxp3 ⁺ regulatory T cells. Immunology, 2009, 128, e670-8.	2.0	25
34	A Rapid Separation of Two Distinct Populations of Mouse Corneal Epithelial Cells with Limbal Stem Cell Characteristics by Centrifugation on Percoll Gradient. , 2008, 49, 3903.		25
35	Production of Nitric Oxide During Graft Rejection Is Regulated by the Th1/Th2 Balance, the Arginase Activity, and l-arginine Metabolism. Transplantation, 2006, 81, 1708-1715.	0.5	17
36	The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells. Xenotransplantation, 2005, 12, 227-234.	1.6	5

Magdalena Krulova

#	Article	IF	CITATIONS
37	Corneal rat-to-mouse xenotransplantation and the effects of anti-CD4 or anti-CD8 treatment on cytokine and nitric oxide production. Transplant International, 2005, 18, 854-862.	0.8	17
38	Susceptibility of corneal allografts and xenografts to antibody-mediated rejection. Immunology Letters, 2005, 100, 211-213.	1.1	20
39	Corneal stromal cells selectively inhibit production of anti-inflammatory cytokines by activated T cells. Clinical and Experimental Immunology, 2004, 136, 200-206.	1.1	5
40	Augmented production of proinflammatory cytokines and accelerated allotransplantation reactions in heroin-treated mice. Clinical and Experimental Immunology, 2003, 132, 40-45.	1.1	27
41	Nitric oxide as a regulatory and effector molecule in the immune system. Molecular Immunology, 2002, 38, 989-995.	1.0	51
42	Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics, 2002, 54, 174-183.	1.2	28
43	Alloantigen-induced, T-cell-dependent production of nitric oxide by macrophages infiltrating skin allografts in mice. Transplant International, 2002, 15, 108-116.	0.8	13
44	Immunosuppressive effects of vermiculine in vitro and in allotransplantation system in vivo. International Immunopharmacology, 2001, 1, 1939-1945.	1.7	8
45	Induction of specific transplantation immunity by oral immunization with allogeneic cells. Immunology, 2000, 101, 404-411.	2.0	6
46	Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes and Immunity, 2000, 1, 200-206.	2.2	75
47	A novel alloreactivity-controlling locus, Alan1 , mapped to mouse Chromosome 17. Immunogenetics, 2000, 51, 755-757.	1.2	3
48	T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse Chromosomes 7 and 9. Mammalian Genome, 1999, 10, 670-674.	1.0	9
49	The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by loci Cypr2 and Cypr3 , respectively. Immunogenetics, 1999, 49, 134-141.	1.2	26
50	T-cell proliferative response is controlled by locus Tria3 on mouse chromosome 17. Immunogenetics, 1999, 49, 235-237.	1.2	4
51	IL-10 is an effector molecule mediating urocanic acid-induced immunosuppression. Transplantation Proceedings, 1999, 31, 1218-1219.	0.3	3
52	IL-2-Induced Proliferative Response Is Controlled by LociCinda1andCinda2on Mouse Chromosomes 11 and 12: A Distinct Control of the Response Induced by Different IL-2 Concentrations. Genomics, 1997, 42, 11-15.	1.3	22
53	Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics, 1996, 44, 475-477.	1.2	10
54	Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics, 1996, 44, 475-477.	1.2	0

4

#	Article	IF	CITATIONS
55	Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics, 1995, 41, 301-311.	1.2	30