List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915007/publications.pdf Version: 2024-02-01

IOHN RIENIS

#	Article	IF	CITATIONS
1	Altered propionate metabolism contributes to tumour progression and aggressiveness. Nature Metabolism, 2022, 4, 435-443.	11.9	33
2	Targeting mTOR in the Context of Diet and Whole-body Metabolism. Endocrinology, 2022, 163, .	2.8	4
3	Prolonged deprivation of arginine or leucine induces PI3K/Akt-dependent reactivation of mTORC1. Journal of Biological Chemistry, 2022, 298, 102030.	3.4	8
4	Suppression of nuclear GSK3 signaling promotes serine/one-carbon metabolism and confers metabolic vulnerability in lung cancer cells. Science Advances, 2022, 8, .	10.3	15
5	mTORC1-chaperonin CCT signaling regulates m ⁶ A RNA methylation to suppress autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
6	mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Molecular Cell, 2021, 81, 2064-2075.e8.	9.7	50
7	NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Reports, 2021, 35, 109238.	6.4	19
8	Editorial Note to: Glucose Addiction of TSC Null Cells Is Caused by Failed mTORC1-Dependent Balancing of Metabolic Demand with Supply. Molecular Cell, 2021, 81, 3031.	9.7	0
9	Identification and characterization of the mediator kinase-dependent myometrial stem cell phosphoproteome. F&S Science, 2021, 2, 383-395.	0.9	2
10	Glutamine deprivation triggers NAGK-dependent hexosamine salvage. ELife, 2021, 10, .	6.0	24
11	Inhibition of osteoclasts differentiation by CDC2-induced NFATc1 phosphorylation. Bone, 2020, 131, 115153.	2.9	11
12	Raymond L. Erikson (1936–2020). Molecular Cell, 2020, 78, 988-990.	9.7	0
13	Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature, 2020, 585, 283-287.	27.8	115
14	Targeting the premetastatic niche: epigenetic therapies in the spotlight. Signal Transduction and Targeted Therapy, 2020, 5, 68.	17.1	7
15	Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nature Communications, 2020, 11, 1416.	12.8	51
16	Structural Insights into the Activation of mTORC1 on the Lysosomal Surface. Trends in Biochemical Sciences, 2020, 45, 367-369.	7.5	3
17	Histone H3 variants at the root of metastasis. Molecular and Cellular Oncology, 2020, 7, 1684128.	0.7	3
18	Raymond L. Erikson (1936–2020). Cell, 2020, 181, 961-963.	28.9	0

JOHN BLENIS

#	Article	IF	CITATIONS
19	Regulation of GSK3 cellular location by FRAT modulates mTORC1-dependent cell growth and sensitivity to rapamycin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19523-19529.	7.1	20
20	Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell, 2019, 36, 402-417.e13.	16.8	69
21	p90 ribosomal S6 kinase (RSK) phosphorylates myosin phosphatase and thereby controls edge dynamics during cell migration. Journal of Biological Chemistry, 2019, 294, 10846-10862.	3.4	23
22	ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2967-2976.	7.1	61
23	<i>EIF1AX</i> and <i>RAS</i> Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discovery, 2019, 9, 264-281.	9.4	57
24	The nuclear translocation of the kinases p38 and JNK promotes inflammation-induced cancer. Science Signaling, 2018, 11, .	3.6	36
25	Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology, 2018, 20, 332-343.	10.3	1,101
26	Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. Cancer Cell, 2018, 33, 347-354.	16.8	133
27	Mitochondrial One-Carbon Pathway Supports Cytosolic Folate Integrity in Cancer Cells. Cell, 2018, 175, 1546-1560.e17.	28.9	84
28	mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent Foxk1 Phosphorylation. Molecular Cell, 2018, 70, 949-960.e4.	9.7	107
29	Beyond the Warburg Effect: How Do Cancer Cells Regulate One-Carbon Metabolism?. Frontiers in Cell and Developmental Biology, 2018, 6, 90.	3.7	88
30	Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 850-858.	5.6	74
31	TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease. Cell, 2017, 171, 10-13.	28.9	100
32	Adding Polyamine Metabolism to the mTORC1 Toolkit in Cell Growth and Cancer. Developmental Cell, 2017, 42, 112-114.	7.0	11
33	Focal Adhesion- and IGF1R-Dependent Survival and Migratory Pathways Mediate Tumor Resistance to mTORC1/2 Inhibition. Molecular Cell, 2017, 67, 512-527.e4.	9.7	40
34	Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling. Cell, 2017, 171, 1545-1558.e18.	28.9	159
35	The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes and Development, 2016, 30, 2551-2564.	5.9	100
36	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	2.1	43

JOHN BLENIS

#	Article	IF	CITATIONS
37	mTORC1-Driven Tumor Cells Are Highly Sensitive to Therapeutic Targeting by Antagonists of Oxidative Stress. Cancer Research, 2016, 76, 4816-4827.	0.9	23
38	Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1778-1783.	7.1	239
39	Seeing mTORC1 specificity. Science, 2016, 351, 25-26.	12.6	5
40	Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis. JCI Insight, 2016, 1, e86629.	5.0	8
41	A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Current Opinion in Biotechnology, 2015, 34, 110-117.	6.6	72
42	ERK2 Mediates Metabolic Stress Response to Regulate Cell Fate. Molecular Cell, 2015, 59, 382-398.	9.7	84
43	ERK reinforces actin polymerization to power persistent edge protrusion during motility. Science Signaling, 2015, 8, ra47.	3.6	71
44	PtdIns(3,4,5) <i>P</i> 3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery, 2015, 5, 1194-1209.	9.4	297
45	Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E21-9.	7.1	51
46	FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy, 2014, 10, 1749-1760.	9.1	64
47	Rapamycin: One Drug, Many Effects. Cell Metabolism, 2014, 19, 373-379.	16.2	912
48	Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. Journal of Experimental Medicine, 2014, 211, 15-28.	8.5	60
49	Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2182-90.	7.1	109
50	Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2918-27.	7.1	70
51	The mTORC1/S6K1 Pathway Regulates Glutamine Metabolism through the eIF4B-Dependent Control of c-Myc Translation. Current Biology, 2014, 24, 2274-2280.	3.9	213
52	Akt-ivation of RNA Splicing. Molecular Cell, 2014, 53, 519-520.	9.7	6
53	Grb10 Promotes Lipolysis and Thermogenesis by Phosphorylation-Dependent Feedback Inhibition of mTORC1. Cell Metabolism, 2014, 19, 967-980.	16.2	106
54	Abstract B09: Aspirin inhibits cyclooxygenase 2-mediated prostaglandin production and tumorigenesisin a preclinical model of tuberous sclerosis complex. , 2014, , .		0

#	Article	IF	CITATIONS
55	Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nature Cell Biology, 2013, 15, 1340-1350.	10.3	216
56	Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism. Cancer Research, 2013, 73, 4429-4438.	0.9	178
57	Metabolic Stress Controls mTORC1 Lysosomal Localization and Dimerization by Regulating the TTT-RUVBL1/2 Complex. Molecular Cell, 2013, 49, 172-185.	9.7	183
58	SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell, 2013, 23, 450-463.	16.8	389
59	Nutrient Regulation of the mTOR Complex 1 Signaling Pathway. Molecules and Cells, 2013, 35, 463-473.	2.6	221
60	The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4. Cell, 2013, 153, 840-854.	28.9	505
61	mTORC1 Signaling Aids in CADalyzing Pyrimidine Biosynthesis. Cell Metabolism, 2013, 17, 633-635.	16.2	11
62	AKT Facilitates EGFR Trafficking and Degradation by Phosphorylating and Activating PIKfyve. Science Signaling, 2013, 6, ra45.	3.6	87
63	Integration of mTOR and estrogen–ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14960-14965.	7.1	60
64	Down-regulation of CMTM8 Induces Epithelial-to-Mesenchymal Transition-like Changes via c-MET/Extracellular Signal-regulated Kinase (ERK) Signaling. Journal of Biological Chemistry, 2012, 287, 11850-11858.	3.4	52
65	TPCK inhibits AGC kinases by direct activation loop adduction at phenylalanineâ€directed cysteine residues. FEBS Letters, 2012, 586, 3471-3476.	2.8	4
66	Hippo–YAP and mTOR pathways collaborate to regulate organ size. Nature Cell Biology, 2012, 14, 1244-1245.	10.3	66
67	ERK-MAPK Drives Lamellipodia Protrusion by Activating the WAVE2 Regulatory Complex. Molecular Cell, 2011, 41, 661-671.	9.7	155
68	Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling. Science, 2011, 332, 1322-1326.	12.6	772
69	The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in Biochemical Sciences, 2011, 36, 320-328.	7.5	1,423
70	Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1204-13.	7.1	144
71	A High-Throughput, Cell-Based Screening Method for siRNA and Small Molecule Inhibitors of mTORC1 Signaling Using the In Cell Western Technique. Assay and Drug Development Technologies, 2010, 8, 186-199.	1.2	31
72	ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Cell Cycle, 2010, 9, 2483-2484.	2.6	22

#	Article	IF	CITATIONS
73	ERK2 but Not ERK1 Induces Epithelial-to-Mesenchymal Transformation via DEF Motif-Dependent Signaling Events. Molecular Cell, 2010, 38, 114-127.	9.7	263
74	Glucose Addiction of TSC Null Cells Is Caused by Failed mTORC1-Dependent Balancing of Metabolic Demand with Supply. Molecular Cell, 2010, 38, 487-499.	9.7	236
75	ATM: Promoter of Metabolic "Cost―Reduction and "Savings―Usage during Hypoxia through mTORC1 Regulation. Molecular Cell, 2010, 40, 501-502.	9.7	4
76	A Genome-Wide siRNA Screen Reveals Multiple mTORC1 Independent Signaling Pathways Regulating Autophagy under Normal Nutritional Conditions. Developmental Cell, 2010, 18, 1041-1052.	7.0	208
77	mTORC1-Mediated Control of Protein Translation. The Enzymes, 2010, 28, 1-20.	1.7	7
78	Distinct Roles for Mammalian Target of Rapamycin Complexes in the Fibroblast Response to Transforming Growth Factor-β. Cancer Research, 2009, 69, 84-93.	0.9	82
79	p90 Ribosomal S6 Kinase and p70 Ribosomal S6 Kinase Link Phosphorylation of the Eukaryotic Chaperonin Containing TCP-1 to Growth Factor, Insulin, and Nutrient Signaling. Journal of Biological Chemistry, 2009, 284, 14939-14948.	3.4	81
80	Not all substrates are treated equally: Implications for mTOR, rapamycin-resistance, and cancer therapy. Cell Cycle, 2009, 8, 567-572.	2.6	197
81	Molecular mechanisms of mTOR-mediated translational control. Nature Reviews Molecular Cell Biology, 2009, 10, 307-318.	37.0	2,198
82	The RSK family of kinases: emerging roles in cellular signalling. Nature Reviews Molecular Cell Biology, 2008, 9, 747-758.	37.0	656
83	Ran-Binding Protein 3 Phosphorylation Links the Ras and PI3-Kinase Pathways to Nucleocytoplasmic Transport. Molecular Cell, 2008, 29, 362-375.	9.7	75
84	SKAR Links Pre-mRNA Splicing to mTOR/S6K1-Mediated Enhanced Translation Efficiency of Spliced mRNAs. Cell, 2008, 133, 303-313.	28.9	271
85	Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6584-6589.	7.1	195
86	Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17414-17419.	7.1	716
87	RAS/ERK Signaling Promotes Site-specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap-dependent Translation. Journal of Biological Chemistry, 2007, 282, 14056-14064.	3.4	627
88	SHP-2 Regulates Cell Growth by Controlling the mTOR/S6 Kinase 1 Pathway. Journal of Biological Chemistry, 2007, 282, 6946-6953.	3.4	19
89	PHLPPing It off: Phosphatases Get in the Akt. Molecular Cell, 2007, 25, 798-800.	9.7	47
90	Mind the GAP: Wnt Steps onto the mTORC1 Train. Cell, 2006, 126, 834-836.	28.9	34

#	Article	IF	CITATIONS
91	The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO Journal, 2006, 25, 2781-2791.	7.8	459
92	Inhibition of ERK-MAP kinase signaling by RSK during Drosophila development. EMBO Journal, 2006, 25, 3056-3067.	7.8	69
93	TORgeting oncogene addiction for cancer therapy. Cancer Cell, 2006, 9, 77-79.	16.8	61
94	MAPK signal specificity: the right place at the right time. Trends in Biochemical Sciences, 2006, 31, 268-275.	7.5	625
95	Rheb Activation of mTOR and S6K1 Signaling. Methods in Enzymology, 2006, 407, 542-555.	1.0	23
96	A Specific Mechanomodulatory Role for p38 MAPK in Embryonic Joint Articular Surface Cell MEK-ERK Pathway Regulation. Journal of Biological Chemistry, 2006, 281, 11011-11018.	3.4	30
97	Cell Growth Regulation by PI3â€kinase, Ras and mTOR Signal Integration. FASEB Journal, 2006, 20, A852.	0.5	0
98	Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nature Cell Biology, 2005, 7, 591-600.	10.3	510
99	Spatially Separate Docking Sites on ERK2 Regulate Distinct Signaling Events In Vivo. Current Biology, 2005, 15, 1319-1324.	3.9	99
100	The Tumor Suppressor DAP Kinase Is a Target of RSK-Mediated Survival Signaling. Current Biology, 2005, 15, 1762-1767.	3.9	130
101	Graded Mitogen-Activated Protein Kinase Activity Precedes Switch-Like c-Fos Induction in Mammalian Cells. Molecular and Cellular Biology, 2005, 25, 4676-4682.	2.3	95
102	Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 667-672.	7.1	201
103	Identification of S6 Kinase 1 as a Novel Mammalian Target of Rapamycin (mTOR)-phosphorylating Kinase. Journal of Biological Chemistry, 2005, 280, 26089-26093.	3.4	301
104	Characterization of a Conserved C-terminal Motif (RSPRR) in Ribosomal Protein S6 Kinase 1 Required for Its Mammalian Target of Rapamycin-dependent Regulation. Journal of Biological Chemistry, 2005, 280, 11101-11106.	3.4	50
105	mTOR and S6K1 Mediate Assembly of the Translation Preinitiation Complex through Dynamic Protein Interchange and Ordered Phosphorylation Events. Cell, 2005, 123, 569-580.	28.9	1,018
106	Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Letters, 2005, 579, 4763-4768.	2.8	87
107	mTOR, translational control and human disease. Seminars in Cell and Developmental Biology, 2005, 16, 29-37.	5.0	294
108	ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions. Microbiology and Molecular Biology Reviews, 2004, 68, 320-344.	6.6	2,059

#	Article	IF	CITATIONS
109	Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13489-13494.	7.1	661
110	Deletion of Ribosomal S6 Kinases Does Not Attenuate Pathological, Physiological, or Insulin-Like Growth Factor 1 Receptor-Phosphoinositide 3-Kinase-Induced Cardiac Hypertrophy. Molecular and Cellular Biology, 2004, 24, 6231-6240.	2.3	111
111	Ribosomal S6 Kinase (RSK) Regulates Phosphorylation of Filamin A on an Important Regulatory Site. Molecular and Cellular Biology, 2004, 24, 3025-3035.	2.3	155
112	mTOR Controls Cell Cycle Progression through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E. Molecular and Cellular Biology, 2004, 24, 200-216.	2.3	763
113	A Network of Immediate Early Gene Products Propagates Subtle Differences in Mitogen-Activated Protein Kinase Signal Amplitude and Duration. Molecular and Cellular Biology, 2004, 24, 144-153.	2.3	294
114	Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 2004, 23, 3151-3171.	5.9	1,124
115	SKAR Is a Specific Target of S6 Kinase 1 in Cell Growth Control. Current Biology, 2004, 14, 1540-1549.	3.9	172
116	PI3-kinase and TOR: PIKTORing cell growth. Seminars in Cell and Developmental Biology, 2004, 15, 147-159.	5.0	124
117	Characterizing the interaction of the mammalian eIF4E-related protein 4EHP with 4E-BP1. FEBS Letters, 2004, 564, 58-62.	2.8	23
118	TOS Motif-Mediated Raptor Binding Regulates 4E-BP1 Multisite Phosphorylation and Function. Current Biology, 2003, 13, 797-806.	3.9	442
119	Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Current Biology, 2003, 13, 1259-1268.	3.9	1,047
120	Inactivation of the Tuberous Sclerosis Complex-1 and -2 Gene Products Occurs by Phosphoinositide 3-Kinase/Akt-dependent and -independent Phosphorylation of Tuberin. Journal of Biological Chemistry, 2003, 278, 37288-37296.	3.4	182
121	Cutting Edge: Different Toll-Like Receptor Agonists Instruct Dendritic Cells to Induce Distinct Th Responses via Differential Modulation of Extracellular Signal-Regulated Kinase-Mitogen-Activated Protein Kinase and c-Fos. Journal of Immunology, 2003, 171, 4984-4989.	0.8	704
122	Phosphorylation of p90 Ribosomal S6 Kinase (RSK) Regulates Extracellular Signal-Regulated Kinase Docking and RSK Activity. Molecular and Cellular Biology, 2003, 23, 4796-4804.	2.3	173
123	Characterization of Phosphatidylinositol 3-Kinase-dependent Phosphorylation of the Hydrophobic Motif Site Thr389 in p70 S6 Kinase 1. Journal of Biological Chemistry, 2002, 277, 40281-40289.	3.4	70
124	Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes and Development, 2002, 16, 1472-1487.	5.9	920
125	Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13571-13576.	7.1	744
126	Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 2002, 10, 151-162.	9.7	1,376

#	Article	IF	CITATIONS
127	Identification of a Conserved Motif Required for mTOR Signaling. Current Biology, 2002, 12, 632-639.	3.9	434
128	Molecular interpretation of ERK signal duration by immediate early gene products. Nature Cell Biology, 2002, 4, 556-564.	10.3	823
129	Fas-associated Death Domain Protein (FADD) and Caspase-8 Mediate Up-regulation of c-Fos by Fas Ligand and Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) via a FLICE Inhibitory Protein (FLIP)-regulated Pathway. Journal of Biological Chemistry, 2001, 276, 32585-32590.	3.4	66
130	Ribosomal S6 Kinase 2 Inhibition by a Potent C-terminal Repressor Domain Is Relieved by Mitogen-activated Protein-Extracellular Signal-regulated Kinase Kinase-regulated Phosphorylation. Journal of Biological Chemistry, 2001, 276, 7892-7898.	3.4	58
131	Regulation of Ribosomal S6 Kinase 2 by Effectors of the Phosphoinositide 3-Kinase Pathway. Journal of Biological Chemistry, 2001, 276, 7884-7891.	3.4	55
132	Cargo of Kinesin Identified as Jip Scaffolding Proteins and Associated Signaling Molecules. Journal of Cell Biology, 2001, 152, 959-970.	5.2	556
133	Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8. Journal of Biological Chemistry, 2001, 276, 46639-46646.	3.4	434
134	Disruption of 3-Phosphoinositide-dependent Kinase 1 (PDK1) Signaling by the Anti-tumorigenic and Anti-proliferative AgentN-α-tosyl-l-phenylalanyl Chloromethyl Ketone. Journal of Biological Chemistry, 2001, 276, 12466-12475.	3.4	48
135	Characterization of Regulatory Events Associated with Membrane Targeting of p90 Ribosomal S6 Kinase 1. Molecular and Cellular Biology, 2001, 21, 7470-7480.	2.3	93
136	Rsk1 mediates a MEK–MAP kinase cell survival signal. Current Biology, 2000, 10, 127-135.	3.9	271
137	Essential Role for Caspase-8 in Transcription-independent Apoptosis Triggered by p53. Journal of Biological Chemistry, 2000, 275, 38905-38911.	3.4	116
138	FADD/MORT1 and Caspase-8 Are Recruited to TRAIL Receptors 1 and 2 and Are Essential for Apoptosis Mediated by TRAIL Receptor 2. Immunity, 2000, 12, 599-609.	14.3	748
139	Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene, 1999, 18, 5108-5114.	5.9	137
140	Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Current Biology, 1999, 9, 810-S1.	3.9	137
141	Caspase-8 Is Required for Cell Death Induced by Expanded Polyglutamine Repeats. Neuron, 1999, 22, 623-633.	8.1	394
142	Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 1999, 96, 857-868.	28.9	5,895
143	p70 S6 Kinase Is Regulated by Protein Kinase Cζ and Participates in a Phosphoinositide 3-Kinase-Regulated Signalling Complex. Molecular and Cellular Biology, 1999, 19, 2921-2928.	2.3	178
144	The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene, 1998, 17, 1893-1901.	5.9	69

#	Article	IF	CITATIONS
145	Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Current Biology, 1998, 8, 1001-1008.	3.9	522
146	pp90 ^{rsk1} Regulates Estrogen Receptor-Mediated Transcription through Phosphorylation of Ser-167. Molecular and Cellular Biology, 1998, 18, 1978-1984.	2.3	324
147	Cloning and Characterization of a Human STE20-like Protein Kinase with Unusual Cofactor Requirements. Journal of Biological Chemistry, 1997, 272, 28695-28703.	3.4	100
148	Neurotransmitter- and Growth Factor-Induced cAMP Response Element Binding Protein Phosphorylation in Glial Cell Progenitors: Role of Calcium Ions, Protein Kinase C, and Mitogen-Activated Protein Kinase/Ribosomal S6 Kinase Pathway. Journal of Neuroscience, 1997, 17, 1291-1301.	3.6	179
149	A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene, 1997, 14, 653-659.	5.9	74
150	Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases. Oncogene, 1997, 14, 1635-1642.	5.9	183
151	The Signal-Dependent Coactivator CBP Is a Nuclear Target for pp90RSK. Cell, 1996, 86, 465-474.	28.9	254
152	The 70 kDa S6 Kinase Complexes with and Is Activated by the Rho Family G Proteins Cdc42 and Rac1. Cell, 1996, 85, 573-583.	28.9	293
153	The Serine Protease Inhibitors, Tosylphenylalanine Chloromethyl Ketone and Tosyllysine Chloromethyl Ketone, Potently Inhibit pp70 Activation. Journal of Biological Chemistry, 1996, 271, 23650-23652.	3.4	35
154	Dominant Mutations Confer Resistance to the Immunosuppressant, Rapamycin, in Variants of a T Cell Lymphoma. Cellular Immunology, 1995, 163, 70-79.	3.0	36
155	The Pleckstrin Homology Domain in Insulin Receptor Substrate-1 Sensitizes Insulin Signaling. Journal of Biological Chemistry, 1995, 270, 11715-11718.	3.4	97
156	The 70 kDa S6 kinase: regulation of a kinase with multiple roles in mitogenic signalling. Current Opinion in Cell Biology, 1995, 7, 806-814.	5.4	246
157	PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature, 1994, 370, 71-75.	27.8	722
158	Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or FcεRI: rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells. European Journal of Immunology, 1993, 23, 3286-3291.	2.9	88
159	Subcellular localization specified by protein acylation and phosphorylation. Current Opinion in Cell Biology, 1993, 5, 984-989.	5.4	36
160	Cytoplasmic to nuclear signal transduction by mitogen-activated protein kinase and 90 kDa ribosomal S6 kinase. Biochemical Society Transactions, 1993, 21, 895-900.	3.4	31
161	ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell, 1992, 68, 1041-1050.	28.9	955
162	Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell, 1992, 69, 1227-1236.	28.9	1,141

JOHN BLENIS

#	Article	IF	CITATIONS
163	Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature, 1992, 358, 70-73.	27.8	612
164	Heat shock induces two distinct S6 protein kinase activities in quiescent mammalian fibroblasts. Journal of Cellular Physiology, 1991, 148, 252-259.	4.1	52
165	Construction and characterization of a cDNA clone containing a portion of the bovine prolactin sequence. Nucleic Acids Research, 1980, 8, 1561-1573.	14.5	27