
Walter Senn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8914927/publications.pdf Version: 2024-02-01

WAITED SENN

#	Article	IF	CITATIONS
1	Cortical oscillations support sampling-based computations in spiking neural networks. PLoS Computational Biology, 2022, 18, e1009753.	1.5	8
2	Learning cortical representations through perturbed and adversarial dreaming. ELife, 2022, 11, .	2.8	10
3	Natural-gradient learning for spiking neurons. ELife, 2022, 11, .	2.8	2
4	Spike-Timing Dependent Plasticity, Learning Rules. , 2022, , 3262-3270.		0
5	Reinforcement Learning in Cortical Networks. , 2022, , 3019-3026.		Ο
6	Stress-induced alterations of social behavior are reversible by antagonism of steroid hormones in C57/BL6 mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 127-135.	1.4	11
7	Predictive olfactory learning in Drosophila. Scientific Reports, 2021, 11, 6795.	1.6	19
8	Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. ELife, 2021, 10, .	2.8	20
9	Evolving interpretable plasticity for spiking networks. ELife, 2021, 10, .	2.8	8
10	Efficient Low-Pass Dendro-Somatic Coupling in the Apical Dendrite of Layer 5 Pyramidal Neurons in the Anterior Cingulate Cortex. Journal of Neuroscience, 2020, 40, 8799-8815.	1.7	10
11	Conductance-based dendrites perform reliability-weighted opinion pooling. , 2020, , .		1
12	Natural gradient learning for spiking neurons. , 2020, , .		0
13	Stochasticity from function — Why the Bayesian brain may need no noise. Neural Networks, 2019, 119, 200-213.	3.3	19
14	A deep learning framework for neuroscience. Nature Neuroscience, 2019, 22, 1761-1770.	7.1	563
15	Statistical modelling of navigational decisions based on intensity versus directionality in Drosophila larval phototaxis. Scientific Reports, 2018, 8, 11272.	1.6	4
16	Spiking neurons with short-term synaptic plasticity form superior generative networks. Scientific Reports, 2018, 8, 10651.	1.6	20
17	Spatial But Not Oculomotor Information Biases Perceptual Memory: Evidence From Face Perception and Cognitive Modeling. Cognitive Science, 2017, 41, 1533-1554.	0.8	0
18	Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites. PLoS Computational Biology, 2016, 12, e1004638.	1.5	61

#	Article	IF	CITATIONS
19	Prospective Coding by Spiking Neurons. PLoS Computational Biology, 2016, 12, e1005003.	1.5	35
20	Scale-Free Navigational Planning by Neuronal Traveling Waves. PLoS ONE, 2015, 10, e0127269.	1.1	10
21	Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding. PLoS ONE, 2015, 10, e0144636.	1.1	3
22	Neurons that Remember How We Got There. Neuron, 2015, 85, 664-666.	3.8	0
23	Backward reasoning the formation rules. Nature Neuroscience, 2015, 18, 1705-1706.	7.1	2
24	Human and Machine Learning in Non-Markovian Decision Making. PLoS ONE, 2015, 10, e0123105.	1.1	9
25	Modulation of orientation-selective neurons by motion: when additive, when multiplicative?. Frontiers in Computational Neuroscience, 2014, 8, 67.	1.2	0
26	CODE-SPECIFIC LEARNING RULES IMPROVE ACTION SELECTION BY POPULATIONS OF SPIKING NEURONS. International Journal of Neural Systems, 2014, 24, 1450002.	3.2	39
27	A Normative Theory of Forgetting: Lessons from the Fruit Fly. PLoS Computational Biology, 2014, 10, e1003640.	1.5	28
28	Nerve Injury-Induced Neuropathic Pain Causes Disinhibition of the Anterior Cingulate Cortex. Journal of Neuroscience, 2014, 34, 5754-5764.	1.7	129
29	Learning by the Dendritic Prediction of Somatic Spiking. Neuron, 2014, 81, 521-528.	3.8	149
30	Reinforcement Learning in Cortical Networks. , 2014, , 1-9.		0
31	Spike-Timing-Dependent Plasticity, Learning Rules. , 2014, , 1-10.		1
32	Reinforcement Learning in Cortical Networks. , 2014, , 1-6.		0
33	Matching Recall and Storage in Sequence Learning with Spiking Neural Networks. Journal of Neuroscience, 2013, 33, 9565-9575.	1.7	107
34	Spike-based Decision Learning of Nash Equilibria in Two-Player Games. PLoS Computational Biology, 2012, 8, e1002691.	1.5	5
35	Gradient estimation in dendritic reinforcement learning. Journal of Mathematical Neuroscience, 2012, 2, 2.	2.4	4
36	Policy gradient rules for populations of spiking neurons. BMC Neuroscience, 2011, 12, .	0.8	0

#	Article	IF	CITATIONS
37	Reinforcement learning in dendritic structures. BMC Neuroscience, 2011, 12, .	0.8	Ο
38	Spatio-Temporal Credit Assignment in Neuronal Population Learning. PLoS Computational Biology, 2011, 7, e1002092.	1.5	46
39	Learning Spike-Based Population Codes by Reward and Population Feedback. Neural Computation, 2010, 22, 1698-1717.	1.3	12
40	Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity. Neuron, 2010, 65, 563-576.	3.8	253
41	Adaptive Gain Modulation in V1 Explains Contextual Modifications during Bisection Learning. PLoS Computational Biology, 2009, 5, e1000617.	1.5	6
42	Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail. PLoS Computational Biology, 2009, 5, e1000586.	1.5	82
43	A Gradient Learning Rule for the Tempotron. Neural Computation, 2009, 21, 340-352.	1.3	16
44	Learning flexible sensori-motor mappings in a complex network. Biological Cybernetics, 2009, 100, 147-158.	0.6	16
45	Stimulus sampling as an exploration mechanism for fast reinforcement learning. Biological Cybernetics, 2009, 100, 319-330.	0.6	3
46	Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature, 2009, 457, 1137-1141.	13.7	326
47	Reinforcement learning in populations of spiking neurons. Nature Neuroscience, 2009, 12, 250-252.	7.1	77
48	Special issue on object localization. Biological Cybernetics, 2008, 98, 447-447.	0.6	0
49	The response of cortical neurons to in vivo-like input current: theory and experiment: II. Time-varying and spatially distributed inputs. Biological Cybernetics, 2008, 99, 303-318.	0.6	29
50	The response of cortical neurons to in vivo-like input current: theory and experiment. Biological Cybernetics, 2008, 99, 279-301.	0.6	47
51	Special issue on quantitative neuron modeling. Biological Cybernetics, 2008, 99, 237-239.	0.6	12
52	Dopamine Increases the Gain of the Input-Output Response of Rat Prefrontal Pyramidal Neurons. Journal of Neurophysiology, 2008, 99, 2985-2997.	0.9	95
53	Modulating the granularity of category formation by global cortical states. Frontiers in Computational Neuroscience, 2008, 2, 1.	1.2	29
54	Perceptual Learning via Modification of Cortical Top-Down Signals. PLoS Computational Biology, 2007, 3, e165.	1.5	28

#	Article	IF	CITATIONS
55	Learning Real-World Stimuli in a Neural Network with Spike-Driven Synaptic Dynamics. Neural Computation, 2007, 19, 2881-2912.	1.3	310
56	Repetitive TMS over the human oculomotor cortex: Comparison of 1-Hz and theta burst stimulation. Neuroscience Letters, 2006, 409, 57-60.	1.0	136
57	Extending lifetime of plastic changes in the human brain. European Journal of Neuroscience, 2006, 24, 2961-2966.	1.2	120
58	Multiple Time Scales of Temporal Response in Pyramidal and Fast Spiking Cortical Neurons. Journal of Neurophysiology, 2006, 96, 3448-3464.	0.9	108
59	Eluding oblivion with smart stochastic selection of synaptic updates. Chaos, 2006, 16, 026112.	1.0	19
60	Learning Only When Necessary: Better Memories of Correlated Patterns in Networks with Bounded Synapses. Neural Computation, 2005, 17, 2106-2138.	1.3	33
61	Convergence of stochastic learning in perceptrons with binary synapses. Physical Review E, 2005, 71, 061907.	0.8	53
62	Minimal Models of Adapted Neuronal Response to In Vivo–Like Input Currents. Neural Computation, 2004, 16, 2101-2124.	1.3	89
63	Climbing Neuronal Activity as an Event-Based Cortical Representation of Time. Journal of Neuroscience, 2004, 24, 3295-3303.	1.7	133
64	Top-down Dendritic Input Increases the Gain of Layer 5 Pyramidal Neurons. Cerebral Cortex, 2004, 14, 1059-1070.	1.6	279
65	Comparison between networks of conductance- and current-driven neurons: stationary spike rates and subthreshold depolarization. Neurocomputing, 2004, 58-60, 253-258.	3.5	11
66	Slow stochastic learning with global inhibition: a biological solution to the binary perceptron problem. Neurocomputing, 2004, 58-60, 321-326.	3.5	5
67	Neocortical Pyramidal Cells Respond as Integrate-and-Fire Neurons to In Vivo–Like Input Currents. Journal of Neurophysiology, 2003, 90, 1598-1612.	0.9	224
68	Hyperpolarization-Activated Current Ih Disconnects Somatic and Dendritic Spike Initiation Zones in Layer V Pyramidal Neurons. Journal of Neurophysiology, 2003, 90, 2428-2437.	0.9	113
69	Activity-Dependent Development of Axonal and Dendritic Delays, or, Why Synaptic Transmission Should Be Unreliable. Neural Computation, 2002, 14, 583-619.	1.3	44
70	A Synaptic Explanation of Suppression in Visual Cortex. Journal of Neuroscience, 2002, 22, 10053-10065.	1.7	192
71	Hebb in perspective. Biological Cybernetics, 2002, 87, 317-318.	0.6	4
72	Beyond spike timing: the role of nonlinear plasticity and unreliable synapses. Biological Cybernetics, 2002, 87, 344-355.	0.6	40

#	Article	IF	CITATIONS
73	Firing Rate Adaptation without Losing Sensitivity to Input Fluctuations. Lecture Notes in Computer Science, 2002, , 180-185.	1.0	2
74	When NMDA Receptor Conductances Increase Inter- spike Interval Variability. Lecture Notes in Computer Science, 2002, , 235-240.	1.0	1
75	Similar NonLeaky Integrate-and-Fire Neurons with Instantaneous Couplings Always Synchronize. SIAM Journal on Applied Mathematics, 2001, 61, 1143-1155.	0.8	16
76	A model of expectation effects in inferior temporal cortex. Neurocomputing, 2001, 38-40, 1533-1540.	3.5	7
77	Learning direction selectivity through spike-timing dependent modification of neurotransmitter release probability. Neurocomputing, 2001, 38-40, 121-127.	3.5	4
78	An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre- and Postsynaptic Spike Timing. Neural Computation, 2001, 13, 35-67.	1.3	180
79	Modeling of Spontaneous Activity in Developing Spinal Cord Using Activity-Dependent Depression in an Excitatory Network. Journal of Neuroscience, 2000, 20, 3041-3056.	1.7	182
80	Comparison of two models for pattern generation based on synaptic depression. Neurocomputing, 1999, 26-27, 551-556.	3.5	8
81	Recruitment of reticulospinal neurones and steady locomotion in lamprey. Neural Networks, 1998, 11, 1005-1015.	3.3	1
82	A Model of How Rapid Changes in Local Input Resistance of Shark Electrosensory Neurons May Enable Detection of Small Signals. , 1998, , 239-243.		1
83	A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorology, 1995, 74, 321-340.	1.2	170
84	Strange limits of stability in host-parasitoid systems. Journal of Mathematical Biology, 1994, 32, 563-572.	0.8	6
85	Strikte Konvexitäfür Variationsprobleme auf demn-dimensionalen Torus. Manuscripta Mathematica, 1991, 71, 45-65.	0.3	16