
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8914622/publications.pdf Version: 2024-02-01

Μορτένι Οράτιι

#	Article	IF	CITATIONS
1	Environmentally friendly catechol-based synthesis of dibenzosultams. New Journal of Chemistry, 2022, 46, 5593-5605.	1.4	1
2	Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase. European Journal of Medicinal Chemistry, 2022, 234, 114270.	2.6	8
3	Design and development of photoswitchable DFG-Out RET kinase inhibitors. European Journal of Medicinal Chemistry, 2022, 234, 114226.	2.6	7
4	Discovery of Functional Alternatively Spliced PKM Transcripts in Human Cancers. Cancers, 2021, 13, 348.	1.7	8
5	Design and development of a photoswitchable DFG-out kinase inhibitor. Chemical Communications, 2021, 57, 10043-10046.	2.2	9
6	A Small Molecule Targeting Human MEK1/2 Enhances ERK and p38 Phosphorylation under Oxidative Stress or with Phenothiazines. Life, 2021, 11, 297.	1.1	2
7	Interbase-FRET binding assay for pre-microRNAs. Scientific Reports, 2021, 11, 9396.	1.6	6
8	A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease. MSystems, 2021, 6, e0108721.	1.7	13
9	Getting DNA and RNA out of the dark with 2CNqA: a bright adenine analogue and interbase FRET donor. Nucleic Acids Research, 2020, 48, 7640-7652.	6.5	19
10	Lighting Up DNA with the Environment ensitive Bright Adenine Analogue qAN4. ChemPlusChem, 2020, 85, 319-326.	1.3	3
11	A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H ₂ O ₂ and Is the Target of a Small Molecule. Molecular and Cellular Biology, 2020, 40, .	1.1	10
12	Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A. ELife, 2020, 9, .	2.8	20
13	A Fluorescent Kinase Inhibitor that Exhibits Diagnostic Changes in Emission upon Binding. Angewandte Chemie - International Edition, 2019, 58, 15000-15004.	7.2	10
14	A Fluorescent Kinase Inhibitor that Exhibits Diagnostic Changes in Emission upon Binding. Angewandte Chemie, 2019, 131, 15142-15146.	1.6	3
15	Interbase FRET in RNA: from A to Z. Nucleic Acids Research, 2019, 47, 9990-9997.	6.5	23
16	On ommand Regulation of Kinase Activity using Photonic Stimuli. ChemPhotoChem, 2019, 3, 318-326.	1.5	19
17	Pentacyclic adenine: a versatile and exceptionally bright fluorescent DNA base analogue. Chemical Science, 2018, 9, 3494-3502.	3.7	34
18	Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Scientific Reports, 2018, 8, 1038.	1.6	31

#	Article	IF	CITATIONS
19	Pulse-shaped two-photon excitation of a fluorescent base analogue approaches single-molecule sensitivity. Physical Chemistry Chemical Physics, 2018, 20, 28487-28498.	1.3	16
20	Shining New Light on the Spiropyran Photoswitch: A Photocage Decides between <i>cis</i> – <i>trans</i> or Spiro-Merocyanine Isomerization. Journal of the American Chemical Society, 2018, 140, 14069-14072.	6.6	66
21	Synthesis, oligonucleotide incorporation and fluorescence properties in DNA of a bicyclic thymine analogue. Scientific Reports, 2018, 8, 13970.	1.6	11
22	Synthesis and Photophysical Characterization of Azoheteroarenes. Organic Letters, 2018, 20, 4875-4879.	2.4	27
23	Drug Repositioning for Effective Prostate Cancer Treatment. Frontiers in Physiology, 2018, 9, 500.	1.3	85
24	Fluorescent nucleobase analogues for base–base FRET in nucleic acids: synthesis, photophysics and applications. Beilstein Journal of Organic Chemistry, 2018, 14, 114-129.	1.3	30
25	Toward Complete Sequence Flexibility of Nucleic Acid Base Analogue FRET. Journal of the American Chemical Society, 2017, 139, 9271-9280.	6.6	44
26	Network analyses identify liverâ€specific targets for treating liver diseases. Molecular Systems Biology, 2017, 13, 938.	3.2	112
27	Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discovery Today, 2017, 22, 1532-1538.	3.2	28
28	On the use of diarylmaleimide derivatives in biological contexts: An investigation of the photochromic properties in aqueous solution. Dyes and Pigments, 2017, 137, 410-420.	2.0	15
29	Flexibility is important for inhibition of the MDM2/p53 protein–protein interaction by cyclic β-hairpins. Organic and Biomolecular Chemistry, 2016, 14, 10386-10393.	1.5	22
30	Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases. Journal of Biological Chemistry, 2016, 291, 14430-14446.	1.6	16
31	Defects in the calcium-binding region drastically affect the cadherin-like domains of RET tyrosine kinase. Physical Chemistry Chemical Physics, 2016, 18, 8673-8681.	1.3	2
32	Chroman-4-one and chromone based somatostatin Î ² -turn mimetics. European Journal of Medicinal Chemistry, 2016, 114, 59-64.	2.6	11
33	7-(Benzofuran-2-yl)-7-deazadeoxyguanosine as a fluorescence turn-ON probe for single-strand DNA binding protein. Chemical Communications, 2016, 52, 3809-3812.	2.2	33
34	An acido- and photochromic molecular device that mimics triode action. Chemical Communications, 2016, 52, 4659-4662.	2.2	16
35	Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8. Molecular and Cellular Biology, 2016, 36, 913-922.	1.1	42
36	Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design. Scientific Reports, 2015, 5, 12653.	1.6	17

#	Article	IF	CITATIONS
37	A Caged Ret Kinase Inhibitor and its Effect on Motoneuron Development in Zebrafish Embryos. Scientific Reports, 2015, 5, 13109.	1.6	14
38	Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction. PLoS ONE, 2015, 10, e0137867.	1.1	11
39	Characterization of interactions and pharmacophore development for DFG-out inhibitors to RET tyrosine kinase. Journal of Molecular Modeling, 2015, 21, 167.	0.8	11
40	HwHog1 kinase activity is crucial for survival of Hortaea werneckii in extremely hyperosmolar environments. Fungal Genetics and Biology, 2015, 74, 45-58.	0.9	18
41	Secondâ€Generation Fluorescent Quadracyclic Adenine Analogues: Environmentâ€Responsive Probes with Enhanced Brightness. Chemistry - A European Journal, 2015, 21, 4039-4048.	1.7	22
42	Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors. Scientific Reports, 2015, 5, 9769.	1.6	69
43	The unique characteristics of HOG pathway MAPKs in the extremely halotolerant Hortaea werneckii. FEMS Microbiology Letters, 2015, 362, fnv046.	0.7	10
44	8-Triazolylpurines: Towards Fluorescent Inhibitors of the MDM2/p53 Interaction. PLoS ONE, 2015, 10, e0124423.	1.1	11
45	A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation. Micromachines, 2014, 5, 81-96.	1.4	5
46	Synthesis and photophysical characterisation of new fluorescent triazole adenine analogues. Organic and Biomolecular Chemistry, 2014, 12, 5158-5167.	1.5	13
47	Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86. BMC Cancer, 2014, 14, 853.	1.1	14
48	8-Bromination of 2,6,9-trisubstituted purines with pyridinium tribromide. Tetrahedron Letters, 2014, 55, 2929-2931.	0.7	18
49	Towards the development of chromone-based MEK1/2 modulators. European Journal of Medicinal Chemistry, 2014, 85, 127-138.	2.6	12
50	Chromo-pharmacophores: photochromic diarylmaleimide inhibitors for sirtuins. Chemical Science, 2014, 5, 4794-4799.	3.7	51
51	Application of a peptide-based assay to characterize inhibitors targeting protein kinases from yeast. Current Genetics, 2014, 60, 193-200.	0.8	6
52	Synthesis and photophysical characterization of 1- and 4-(purinyl)triazoles. Tetrahedron, 2013, 69, 8857-8864.	1.0	8
53	Determination of primary sequence specificity of <i>Arabidopsis</i> MAPKs MPK3 and MPK6 leads to identification of new substrates. Biochemical Journal, 2012, 446, 271-278.	1.7	58
54	Proline-mediated formation of novel chroman-4-one tetrahydropyrimidines. Tetrahedron, 2012, 68, 7035-7040.	1.0	13

#	Article	IF	CITATIONS
55	Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins. Proteomics, 2012, 12, 3030-3043.	1.3	30
56	Preparation of 3-Substituted-1-Isopropyl-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidin-4-amines as RET Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4872-4876.	2.9	47
57	Solidâ€Phase Synthesis of 5′â€ <i>O</i> â€{ <i>N</i> â€{Acyl)sulfamoyl]adenosine Derivatives. European Journal Organic Chemistry, 2012, 2012, 3665-3669.	of 1.2	4
58	Method for Activation and Recycling of Trityl Resins. Journal of Organic Chemistry, 2012, 77, 7071-7075.	1.7	8
59	Investigation, optimization and synthesis of sulfamoyloxy-linked aminoacyl-AMP analogues. Tetrahedron, 2012, 68, 1507-1514.	1.0	8
60	Design, Synthesis, and Biological Evaluation of Chromone-Based p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 7427-7431.	2.9	50
61	NMR-Based Substrate Analog Docking to Escherichia coli Peptidyl-tRNA Hydrolase. Journal of Molecular Biology, 2011, 412, 619-633.	2.0	15
62	Design, Synthesis and Characterization of a Highly Effective Inhibitor for Analog-Sensitive (as) Kinases. PLoS ONE, 2011, 6, e20789.	1.1	7
63	Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2011, 19, 2659-2665.	1.4	61
64	Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA. Nucleic Acids Research, 2011, 39, 4513-4524.	6.5	43
65	Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast. PLoS ONE, 2011, 6, e20012.	1.1	23
66	Positional Scanning Peptide Libraries for Kinase Substrate Specificity Determinations: Straightforward and Reproducible Synthesis Using Pentafluorophenyl Esters. ACS Combinatorial Science, 2010, 12, 733-742.	3.3	8
67	KHMDS Enhanced Sml ₂ -Mediated Reformatsky Type α-Cyanation. Organic Letters, 2010, 12, 2210-2213.	2.4	39
68	Structural Influence on Radical Formation and Sensitizing Capacity of Alkylic Limonene Hydroperoxide Analogues in Allergic Contact Dermatitis. Chemical Research in Toxicology, 2010, 23, 677-688.	1.7	13
69	2,6,8â€īrisubstituted 3â€Hydroxychromone Derivatives as Fluorophores for Live ell Imaging. Chemistry - A European Journal, 2009, 15, 9417-9423.	1.7	28
70	Synthesis and Photophysical Characterisation of Fluorescent 8â€(1 <i>H</i> â€1,2,3â€Triazolâ€4â€yl)adenosine Derivatives. European Journal of Organic Chemistry, 2009, 2009, 1515-1521.	1.2	48
71	Enhanced microwaveâ€assisted method for onâ€bead disulfide bond formation: Synthesis of αâ€conotoxin MII. Biopolymers, 2009, 92, 23-34.	1.2	29
72	Synthesis of 2-Alkyl-Substituted Chromone Derivatives Using Microwave Irradiation. Journal of Organic Chemistry, 2009, 74, 2755-2759.	1.7	58

#	Article	IF	CITATIONS
73	Short cut to 1,2,3-triazole-based p38 MAP kinase inhibitorsvia [3+2]-cycloaddition chemistry. New Journal of Chemistry, 2009, 33, 1010-1016.	1.4	32
74	Synthesis of 3-(1,2,3-triazol-1-yl)- and 3-(1,2,3-triazol-4-yl)-substituted pyrazolo[3,4-d]pyrimidin-4-amines via click chemistry: potential inhibitors of the Plasmodium falciparum PfPK7 protein kinase. Organic and Biomolecular Chemistry, 2009, 7, 3421.	1.5	43
75	Solid-Phase Peptide Synthesis in Water Using Microwave-Assisted Heating. Organic Letters, 2009, 11, 4488-4491.	2.4	77
76	Synthesis of Chiral 1,4-Disubstituted-1,2,3-Triazole Derivatives from Amino Acids. Molecules, 2009, 14, 5124-5143.	1.7	11
77	Synthesis and photophysical properties of novel cyclonucleosides—substituent effects on fluorescence emission. Tetrahedron, 2008, 64, 7151-7158.	1.0	20
78	Carbon- and Oxygen-Centered Radicals Are Equally Important Haptens of Allylic Hydroperoxides in Allergic Contact Dermatitis. Chemical Research in Toxicology, 2008, 21, 1536-1547.	1.7	23
79	Synthesis of 2′-([1,2,3]Triazol-1-yl)-2′-deoxyadenosines. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 449-459.	0.4	12
80	Synthesis of Functionalized, Unsymmetrical 1,3,4,6-Tetrasubstituted 2,5-Diketopiperazines. Journal of Organic Chemistry, 2007, 72, 195-199.	1.7	36
81	Synthesis of 3-Aminomethyl-2-aryl- 8-bromo-6-chlorochromones. Organic Letters, 2007, 9, 389-391.	2.4	31
82	A practical synthesis of 2′-aminoacylamino-2′-deoxyadenosines. Tetrahedron, 2007, 63, 6901-6908.	1.0	3
83	Microwave assisted synthesis of spiro-2,5-diketopiperazines. Tetrahedron, 2007, 63, 9881-9889.	1.0	26
84	Synthesis of 2,3,6,8-Tetrasubstituted Chromone Scaffolds. Journal of Organic Chemistry, 2006, 71, 6863-6871.	1.7	51
85	Microwave-Assisted Solid-Phase Synthesis of 2,5-Diketopiperazines:Â Solvent and Resin Dependence. ACS Combinatorial Science, 2006, 8, 915-922.	3.3	35
86	Efficient synthesis of 2,5-diketopiperazines using microwave assisted heating. Tetrahedron, 2006, 62, 7484-7491.	1.0	80
87	Microwave-assisted synthesis of the Schöllkopf chiral auxiliaries: (3S)- and (3R)-3,6-dihydro-2,5-diethoxy-3-isopropyl-pyrazine. Tetrahedron Letters, 2006, 47, 5199-5201.	0.7	27
88	Discovering New Classes of BrugiaÂmalayi Asparaginyl-tRNA Synthetase Inhibitors and Relating Specificity to Conformational Change. Journal of Computer-Aided Molecular Design, 2006, 20, 159-178.	1.3	46
89	Design and Synthesis of Novel Chromone Based Peptidomimetics. , 2006, , 677-678.		0
90	A Scaffold Approach to 3,6,8-Trisubstituted Flavones. Synlett, 2006, 2006, 897-900.	1.0	1

#	Article	IF	CITATIONS
91	ROLE OF THE SUBUNIT COMPOSITION OF CENTRAL NICOTINIC ACETYLCHOLINE RECEPTORS FOR THE STIMULATORY AND DOPAMINE-ENHANCING EFFECTS OF ETHANOL. Alcohol and Alcoholism, 2006, 41, 486-493.	0.9	76
92	Synthesis of adenosine-based fluorosides containing a novel heterocyclic ring system. Tetrahedron Letters, 2005, 46, 6745-6748.	0.7	25
93	The Biotin Repressor: Modulation of Allostery by Corepressor Analogs. Journal of Molecular Biology, 2004, 337, 857-869.	2.0	54
94	Structural and Mechanistic Basis of Pre- and Posttransfer Editing by Leucyl-tRNA Synthetase. Molecular Cell, 2003, 11, 951-963.	4.5	209
95	Palladium on Carbon Encapsulated in POEPOP1500:  A Resin-Supported Catalyst for Hydrogenation Reactions. Organic Letters, 2002, 4, 27-30.	2.4	25
96	SPOCC-194, a New High Functional Group Density PEG-Based Resin for Solid-Phase Organic Synthesis. ACS Combinatorial Science, 2002, 4, 523-529.	3.3	33
97	Surfactant Mediated Cationic and Anionic Suspension Polymerization of PEG-Based Resins in Silicon Oil:Â Beaded SPOCC 1500 and POEPOP 1500. ACS Combinatorial Science, 2001, 3, 28-33.	3.3	18
98	Diffusion of Reagents in Macrobeads. ACS Combinatorial Science, 2001, 3, 461-468.	3.3	27
99	Solid-Phase Glycosylation of Peptide Templates and On-Bead MAS-NMR Analysis: Perspectives for Glycopeptide Libraries. Chemistry - A European Journal, 2001, 7, 3584.	1.7	32
100	Crystallization and preliminary crystallographic analysis ofThermus thermophilusleucyl-tRNA synthetase and its complexes with leucine and a non-hydrolysable leucyl-adenylate analogue. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 667-669.	2.5	9
101	Secondary structure prediction and in vitro accessibility of mRNA as tools in the selection of target sites for ribozymes. Nucleic Acids Research, 2000, 28, 4113-4124.	6.5	58
102	HYDRA: A novel hydroxy and amine functionalised resin synthesised by reductive amination of PEG aldehyde and a polyamine. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 4258-4264.	1.3	12
103	Physical Properties of Poly(ethylene glycol) (PEG)-Based Resins for Combinatorial Solid Phase Organic Chemistry:Â A Comparison of PEG-Cross-Linked and PEG-Grafted Resins. ACS Combinatorial Science, 2000, 2, 108-119.	3.3	86
104	Towards peptide isostere libraries: aqueous aldol reactions on hydrophilic solid supports. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 955-962.	1.3	16
105	Single-bead structure elucidation. Requirements for analysis of combinatorial solid-phase libraries by Nanoprobe MAS-NMR spectroscopy. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1167-1171.	1.3	17
106	2′-O-(carbamoylmethyl)oligoribonucleotides. Tetrahedron, 1999, 55, 4299-4314.	1.0	12
107	SPOCC:  A Resin for Solid-Phase Organic Chemistry and Enzymatic Reactions on Solid Phase. Journal of the American Chemical Society, 1999, 121, 5459-5466.	6.6	142
108	The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid. EMBO Journal, 1998, 17, 2947-2960.	3.5	90

#	Article	IF	CITATIONS
109	2′-O-Propargyl oligoribonucleotides: Synthesis and hybridisation. Tetrahedron, 1998, 54, 5899-5914.	1.0	42
110	Solid-phase synthesis of branched RNA and branched DNA/RNA chimeras. Tetrahedron, 1997, 53, 11317-11346.	1.0	29
111	Protection of the guanine residue during synthesis of 2′-O-alkylguanosine derivatives. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2779-2788.	0.9	22
112	A simple method for the synthesis of 2′-O-alkylguanosine derivatives. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 425-428.	1.0	16
113	Ether, Carbonate and Urethane Deoxynucleoside Derivatives as Prodrugs Acta Chemica Scandinavica, 1996, 50, 609-622.	0.7	9
114	A universal solid-phase synthesis of branched oligoribonucleotides. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	4
115	Synthesis of 2'-Allyl-2'-Deoxyribonucleosides by Radical Reactions Acta Chemica Scandinavica, 1995, 49, 217-224.	0.7	18
116	Novel solid-phase synthesis of branched oligoribonucleotides, including a substrate for the RNA debranching enzyme. Journal of the Chemical Society Perkin Transactions 1, 1994, , 419-431.	0.9	17