Mihnea Bostina

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8914603/mihnea-bostina-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45	1,113	19	33
papers	citations	h-index	g-index
50	1,302 ext. citations	5.2	4.2
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
45	Characterization of the First SARS-CoV-2 Isolates from Aotearoa New Zealand as Part of a Rapid Response to the COVID-19 Pandemic <i>Viruses</i> , 2022 , 14,	6.2	1
44	N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. <i>Viruses</i> , 2021 , 13,	6.2	3
43	A Correlative Fluorescent and Electron Microscopic Technique for Ultralocalization of Trichocyte Keratins. <i>Springer Proceedings in Materials</i> , 2021 , 243-250	0.2	O
42	Virus-Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. <i>Oncolytic Virotherapy</i> , 2020 , 9, 1-15	6	12
41	High-pressure freezing followed by freeze substitution of a complex and variable density miniorgan: the wool follicle. <i>Journal of Microscopy</i> , 2020 , 278, 18-28	1.9	2
40	Visualizing Nudivirus Assembly and Egress. <i>MBio</i> , 2020 , 11,	7.8	3
39	Viral infections alter antennal epithelium ultrastructure in honey bees. <i>Journal of Invertebrate Pathology</i> , 2019 , 168, 107252	2.6	1
38	Developing Picornaviruses for Cancer Therapy. <i>Cancers</i> , 2019 , 11,	6.6	19
37	Monoclonal antibodies point to Achilles' heel in picornavirus capsid. <i>PLoS Biology</i> , 2019 , 17, e3000232	9.7	5
36	Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2019 , 374, 201	8 0 890	12
35	Helical twist direction in the macrofibrils of keratin fibres is left handed. <i>Journal of Structural Biology</i> , 2019 , 206, 345-348	3.4	4
34	Hair-Structure Mystery Solved by Datamining Two Decades of Electron Tomograms. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1348-1349	0.5	1
33	Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. <i>Oncolytic Virotherapy</i> , 2019 , 8, 39-56	6	17
32	Cryo-Electron Microscopy Structure of Seneca Valley Virus Procapsid. Journal of Virology, 2018, 92,	6.6	14
31	Structural basis for anthrax toxin receptor 1 recognition by Seneca Valley Virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E10934-E10940	11.5	11
30	Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E5122-E5128	11.5	71
29	Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus. <i>Journal of Clinical Investigation</i> , 2017 , 127, 2957-2967	15.9	31

(2009-2017)

Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. <i>PLoS ONE</i> , 2017 , 12, e0179397	3.7	27
CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia. <i>Microbiology (United Kingdom)</i> , 2016 , 162, 1047-1058	2.9	19
Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord. <i>Gene Therapy</i> , 2015 , 22, 357-64	4	14
Quaternary structure of WzzB and WzzE polysaccharide copolymerases. <i>Protein Science</i> , 2015 , 24, 58-6	9 6.3	18
Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. <i>Viruses</i> , 2015 , 7, 3361-79	6.2	16
Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. <i>Structure</i> , 2014 , 22, 791-7	5.2	16
Mechanism of action and capsid-stabilizing properties of VHHs with an in vitro antipolioviral activity. <i>Journal of Virology</i> , 2014 , 88, 4403-13	6.6	20
Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases. <i>Journal of Structural Biology</i> , 2013 , 184, 147-54	3.4	3
Amorphous TiO2 coated into periodic mesoporous organosilicate channels as a new binary photocatalyst for regeneration of carbonyl compounds from oximes under sunlight irradiation. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 416-9	3.9	32
RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors. <i>Journal of Virology</i> , 2013 , 87, 3903-14	6.6	57
A nano-fibrillated mesoporous carbon as an effective support for palladium nanoparticles in the aerobic oxidation of alcohols "on pure water". <i>Chemistry - A European Journal</i> , 2012 , 18, 8634-40	4.8	50
Inside Cover: A Nano-Fibrillated Mesoporous Carbon as an Effective Support for Palladium Nanoparticles in the Aerobic Oxidation of Alcohols Bn Pure Water[[Chem. Eur. J. 28/2012]. Chemistry - A European Journal, 2012 , 18, 8550-8550	4.8	1
An interaction between DNA polymerase and helicase is essential for the high processivity of the bacteriophage T7 replisome. <i>Journal of Biological Chemistry</i> , 2012 , 287, 39050-60	5.4	23
Protein-protein interactions in the Ebxidation part of the phenylacetate utilization pathway: crystal structure of the PaaF-PaaG hydratase-isomerase complex. <i>Journal of Biological Chemistry</i> , 2012 , 287, 37986-96	5.4	9
Label-free visualization of ultrastructural features of artificial synapses via cryo-EM. <i>ACS Chemical Neuroscience</i> , 2011 , 2, 700-4	5.7	3
Poliovirus RNA is released from the capsid near a twofold symmetry axis. <i>Journal of Virology</i> , 2011 , 85, 776-83	6.6	103
Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. <i>Journal of Virology</i> , 2010 , 84, 4426-41	6.6	90
Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. <i>Cancer Research</i> , 2009 , 69, 1273-8	10.1	57
	CRISPR-Cas gene-editing reveals RsmA and RsmC act through FINDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia. <i>Microbiology (United Kingdom)</i> , 2016, 162, 1047-1058 Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord. <i>Gene Therapy</i> , 2015, 22, 357-64 Quaternary structure of WzzB and WzzE polysaccharide copolymerases. <i>Protein Science</i> , 2015, 24, 58-6 Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. <i>Viruses</i> , 2015, 7, 3361-79 Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. <i>Structure</i> , 2014, 22, 791-7 Mechanism of action and capsid-stabilizing properties of VHHs with an in vitro antipolioviral activity. <i>Journal of Virology</i> , 2014, 88, 403-13 Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases. <i>Journal of Structural Biology</i> , 2013, 184, 147-54 Amorphous TiO2 coated into periodic mesoporous organosilicate channels as a new binary photocatalyst for regeneration of carbonyl compounds from oximes under sunlight irradiation. <i>Organic and Biomolecular Chemistry</i> , 2013, 11, 416-9 RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors. <i>Journal of Virology</i> , 2013, 87, 3903-14 A nano-fibrillated mesoporous carbon as an effective support for palladium nanoparticles in the aerobic Oxidation of Alcohols "on pure water". <i>Chemistry - A European Journal</i> , 2012, 18, 853-8550 An interaction between DNA polymerase and helicase is essential for the high processivity of the bacteriophage T7 replisome. <i>Journal of Biological Chemistry</i> , 2012, 287, 37986-96 Protein-protein interactions in the Excidation part of the phenylacetate utilization pathway: crystal structure of the PaaF-PaaG hydratase-isomerase complex. <i>Journal of Virolo</i>	297, 12, e0179397 CRISPR-Cas gene-editing reveals RSmA and RSmC act through FlhDC to repress the 5dhE Flavinylation factor and control motility and prodigiosin production in Serratia. Microbiology (United Kingdom), 2016, 162, 1047-1058 Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord. Gene Therapy, 2015, 22, 357-64 Quaternary structure of WzzB and WzzE polysaccharide copolymerases. Protein Science, 2015, 24, 58-69 6.3 Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses, 2015, 7, 3361-79 Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. Structure, 2014, 22, 791-7 Mechanism of action and capsid-stabilizing properties of VHHs with an in vitro antipolioviral activity. Journal of Virology, 2014, 88, 4403-13 Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases. Journal of Structural Biology, 2013, 184, 147-54 Amorphous TiO2 coated into periodic mesoporous organosilicate channels as a new binary photocatalyst for regeneration of carbonyl compounds from oximes under sunlight irradiation. Organic and Biomolecular Chemistry, 2013, 11, 416-9 RNA transfer from poliovirus 1355 particles across membranes is mediated by long umbilical connectors. Journal of Virology, 2013, 87, 3903-14 A nano-fibrillated mesoporous carbon as an effective support for palladium nanoparticles in the aerobic oxidation of alcohols "on pure water". Chemistry - A European Journal, 2012, 18, 8634-40 Inside Cover: A Nano-Fibrillated Mesoporous Carbon as an Effective Support for Palladium Nanoparticles in the Aerobic Oxidation of Alcohols in Pure Water(Chem. Eur. J. 28/2012). Chemistry - A European Journal, 2012, 18, 8634-40 Inside Cover: A Nano-Fibrillated Mesoporous Carbon as an Effective Support for Palladium Nanoparticles in the Aerobic Oxidat

10	Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus-receptor-membrane complex at 30 A resolution. <i>Journal of Structural Biology</i> , 2007 , 160, 200-10	3.4	29
9	Biochemical and electron microscopic characterization of the F1F0 ATP synthase from the hyperthermophilic eubacterium Aquifex aeolicus. <i>FEBS Letters</i> , 2006 , 580, 5934-40	3.8	14
8	High-yield expression, reconstitution and structure of the recombinant, fully functional glutamate transporter GLT-1 from Rattus norvegicus. <i>Journal of Molecular Biology</i> , 2005 , 351, 598-613	6.5	25
7	Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. <i>Journal of Molecular Biology</i> , 2005 , 352, 1035-43	6.5	42
6	Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2004 , 1658, 148-56	4.6	71
5	Structural Analysis and Subunit Localization of Complex I from Yarrowia lipolytica <i>Microscopy and Microanalysis</i> , 2004 , 10, 228-229	0.5	
4	Functional implications from an unexpected position of the 49-kDa subunit of NADH:ubiquinone oxidoreductase. <i>Journal of Biological Chemistry</i> , 2003 , 278, 29072-8	5.4	74
3	Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus. <i>Biochemistry</i> , 2003 , 42, 3032-9	3.2	76
2	Forms of particulate phosphorus in suspension and in bottom sediment in the Danube Delta. <i>Lakes and Reservoirs: Research and Management</i> , 2000 , 5, 105-110	1.2	17
1	Cell Entry: a Biochemical and Structural Perspective87-104		O