Agnieszka Wnuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8914119/publications.pdf

Version: 2024-02-01

30	817	18	28
papers	citations	h-index	g-index
33	33	33	1073
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Post-Treatment with Amorfrutin B Evokes PPAR \hat{I}^3 -Mediated Neuroprotection against Hypoxia and Ischemia. Biomedicines, 2021, 9, 854.	1.4	8
2	Is the commonly used UV filter benzophenone-3 a risk factor for the nervous system?. Acta Biochimica Polonica, 2021, 68, 557-563.	0.3	2
3	Posttreatment Strategy Against Hypoxia and Ischemia Based on Selective Targeting of Nonnuclear Estrogen Receptors with PaPE-1. Neurotoxicity Research, 2021, 39, 2029-2041.	1.3	5
4	Prenatal Exposure to Triclocarban Impairs ESR1 Signaling and Disrupts Epigenetic Status in Sex-Specific Ways as Well as Dysregulates the Expression of Neurogenesis- and Neurotransmitter-Related Genes in the Postnatal Mouse Brain. International Journal of Molecular Sciences, 2021, 22, 13121.	1.8	6
5	Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes. Science of the Total Environment, 2020, 701, 134818.	3.9	17
6	Selective Targeting of Non-nuclear Estrogen Receptors with PaPE-1 as a New Treatment Strategy for Alzheimer's Disease. Neurotoxicity Research, 2020, 38, 957-966.	1.3	13
7	Neuroprotective effect of 3,3'-Diindolylmethane against perinatal asphyxia involves inhibition of the AhR and NMDA signaling and hypermethylation of specific genes. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 747-762.	2.2	7
8	Autophagy-related neurotoxicity is mediated via AHR and CAR in mouse neurons exposed to DDE. Science of the Total Environment, 2020, 742, 140599.	3.9	9
9	Effects of exposure to 5-MeO-DIPT during adolescence on brain neurotransmission and neurotoxicity in adult rats. Forensic Toxicology, 2019, 37, 45-58.	1.4	8
10	Triclocarban Disrupts the Epigenetic Status of Neuronal Cells and Induces AHR/CAR-Mediated Apoptosis. Molecular Neurobiology, 2019, 56, 3113-3131.	1.9	28
11	The neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 435-452.	2.2	28
12	Glutathione Deficiency and Alterations in the Sulfur Amino Acid Homeostasis during Early Postnatal Development as Potential Triggering Factors for Schizophrenia-Like Behavior in Adult Rats. Molecules, 2019, 24, 4253.	1.7	15
13	Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARÎ ³ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Molecular Neurobiology, 2019, 56, 4820-4837.	1.9	33
14	Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis. Molecular Neurobiology, 2019, 56, 1-12.	1.9	44
15	The Effects of Exposure to Mephedrone During Adolescence on Brain Neurotransmission and Neurotoxicity in Adult Rats. Neurotoxicity Research, 2018, 34, 525-537.	1.3	19
16	Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. Journal of Steroid Biochemistry and Molecular Biology, 2018, 182, 106-118.	1.2	44
17	Apoptosis Induced by the UV Filter Benzophenone-3 in Mouse Neuronal Cells Is Mediated via Attenuation of $Erl^{\pm}/Pparl^{3}$ and Stimulation of $Erl^{2}/Cpr30$ Signaling. Molecular Neurobiology, 2018, 55, 2362-2383.	1.9	36
18	Bazedoxifene and raloxifene protect neocortical neurons undergoing hypoxia via targeting ERÎ \pm and PPAR-Î 3 . Molecular and Cellular Endocrinology, 2018, 461, 64-78.	1.6	22

#	Article	IF	CITATIONS
19	Benzophenone-3 Impairs Autophagy, Alters Epigenetic Status, and Disrupts Retinoid X Receptor Signaling in Apoptotic Neuronal Cells. Molecular Neurobiology, 2018, 55, 5059-5074.	1.9	29
20	Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 94-109.	1.2	26
21	Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity are Mediated via the Aryl Hydrocarbon Receptor (AhR) but not by Estrogen Receptor Alpha (ERα), Estrogen Receptor Beta (ERβ), or Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Mouse Cortical Neurons. Neurotoxicity Research, 2017. 31. 77-89.	1.3	92
22	Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. International Journal of Molecular Sciences, 2017, 18, 2394.	1.8	55
23	Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. Environmental Research, 2016, 151, 106-114.	3.7	68
24	The Crucial Involvement of Retinoid X Receptors in DDE Neurotoxicity. Neurotoxicity Research, 2016, 29, 155-172.	1.3	32
25	RXRÎ \pm , PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 43-52.	1.2	39
26	Selective Aryl Hydrocarbon Receptor Modulator 3,3′-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia. Molecular Neurobiology, 2016, 53, 5591-5606.	1.9	29
27	Neurodevelopmental effects of nonylphenol. Pharmacological Reports, 2015, 67, 9-10.	1.5	O
28	Neuroprotective action of raloxifene against hypoxia-induced damage in mouse hippocampal cells depends on $\mathrm{ER}\hat{\mathrm{I}}^\pm$ but not $\mathrm{ER}\hat{\mathrm{I}}^2$ or GPR30 signalling. Journal of Steroid Biochemistry and Molecular Biology, 2015, 146, 26-37.	1.2	36
29	Apoptotic and neurotoxic actions of 4-para-nonylphenol are accompanied by activation of retinoid X receptor and impairment of classical estrogen receptor signaling. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 334-347.	1.2	31
30	Isomer-nonspecific action of dichlorodiphenyltrichloroethane on aryl hydrocarbon receptor and G-protein-coupled receptor 30 intracellular signaling in apoptotic neuronal cells. Molecular and Cellular Endocrinology, 2014, 392, 90-105.	1.6	35