Olaf-Georg Issinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8914017/publications.pdf

Version: 2024-02-01

201674 149698 3,242 61 27 56 citations g-index h-index papers 63 63 63 2145 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomedicine and Pharmacotherapy, 2021, 139, 111650.	5.6	16
2	Role of Protein Kinase CK2 in Aberrant Lipid Metabolism in Cancer. Pharmaceuticals, 2020, 13, 292.	3.8	13
3	Natural Compounds and Derivatives as Ser/Thr Protein Kinase Modulators and Inhibitors. Pharmaceuticals, 2019, 12, 4.	3.8	26
4	Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids and Surfaces B: Biointerfaces, 2019, 174, 216-223.	5.0	19
5	Nuclear localization of the CK2 $\hat{I}\pm$ -subunit correlates with poor prognosis in clear cell renal cell carcinoma. Oncotarget, 2017, 8, 1613-1627.	1.8	19
6	The kinase inhibitor D11 induces caspase-mediated cell death in cancer cells resistant to chemotherapeutic treatment. Journal of Experimental and Clinical Cancer Research, 2015, 34, 125.	8.6	18
7	A Note of Caution on the Role of Halogen Bonds for Protein Kinase/Inhibitor Recognition Suggested by High- And Low-Salt CK2α Complex Structures. ACS Chemical Biology, 2015, 10, 1654-1660.	3.4	22
8	Identification of a novel potent, selective and cell permeable inhibitor of protein kinase CK2 from the NIH/NCI Diversity Set Library. Molecular and Cellular Biochemistry, 2015, 406, 151-161.	3.1	17
9	Acetoxymethyl Ester of Tetrabromobenzimidazole–Peptoid Conjugate for Inhibition of Protein Kinase CK2 in Living Cells. Bioconjugate Chemistry, 2015, 26, 2324-2335.	3.6	27
10	Screening of DTP Compound Libraries for CK2 Inhibitors with Focus on Natural Products. , 2015, , 319-340.		1
11	Protein kinase CK2 inhibition is associated with the destabilization of HIF-1 \hat{l} ± in human cancer cells. Cancer Letters, 2015, 356, 751-761.	7.2	27
12	Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2 \hat{l} ±/CK2 \hat{l} 2 interaction. Analytical Biochemistry, 2015, 468, 4-14.	2.4	18
13	Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET2. Molecular and Cellular Biochemistry, 2014, 397, 285-293.	3.1	22
14	Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Letters, 2014, 345, 115-123.	7.2	27
15	The Protein Kinase CK2Andante Holoenzyme Structure Supports Proposed Models of Autoregulation and Trans-Autophosphorylation. Journal of Molecular Biology, 2014, 426, 1871-1882.	4.2	28
16	Synthesis of a new class of pyrrolo [3,4-h] quinazolines with antimitotic activity. European Journal of Medicinal Chemistry, 2014, 74, 340-357.	5.5	45
17	Cytotoxic effects exerted by pentachlorophenol by targeting nodal pro-survival signaling pathways in human pancreatic cancer cells. Toxicology Reports, 2014, 1, 1162-1174.	3.3	2
18	A subnanomolar fluorescent probe for protein kinase CK2 interaction studies. Organic and Biomolecular Chemistry, 2012, 10, 8645.	2.8	32

#	Article	IF	CITATIONS
19	Structure of the Human Protein Kinase CK2 Catalytic Subunit CK2Î \pm â \in 2 and Interaction Thermodynamics with the Regulatory Subunit CK2Î2. Journal of Molecular Biology, 2011, 407, 1-12.	4.2	46
20	Enzymatic activity with an incomplete catalytic spine: insights from a comparative structural analysis of human CK2α and its paralogous isoform CK2α′. Molecular and Cellular Biochemistry, 2011, 356, 57-65.	3.1	21
21	Role of polyamines in determining the cellular response to chemotherapeutic agents: modulation of protein kinase CK2 expression and activity. Molecular and Cellular Biochemistry, 2011, 356, 149-158.	3.1	4
22	Lack of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is accompanied by increased CK2α′ levels. Molecular and Cellular Biochemistry, 2011, 356, 139-147.	3.1	7
23	Conformational plasticity of the catalytic subunit of protein kinase CK2 and its consequences for regulation and drug design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 484-492.	2.3	42
24	Structural Basis of the Constitutive Activity of Protein Kinase CK2. Methods in Enzymology, 2010, 484, 515-529.	1.0	17
25	Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses. International Journal of Oncology, 2009, 35, 1151-7.	3.3	1
26	Resorufin: a lead for a new protein kinase CK2 inhibitor. Anti-Cancer Drugs, 2009, 20, 238-248.	1.4	30
27	Biochemical characterization of CK2α and α′ paralogues and their derived holoenzymes: evidence for the existence of a heterotrimeric CK2α′-holoenzyme forming trimeric complexes. Molecular and Cellular Biochemistry, 2008, 316, 37-47.	3.1	28
28	The $CK2\hat{l}_{-}/CK2\hat{l}_{-}$ Interface of Human Protein Kinase CK2 Harbors a Binding Pocket for Small Molecules. Chemistry and Biology, 2008, 15, 111-117.	6.0	89
29	Exploring the intramolecular phosphorylation sites in human Chk2. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 646, 50-59.	1.0	3
30	The Catalytic Subunit of Human Protein Kinase CK2 Structurally Deviates from Its Maize Homologue in Complex with the Nucleotide Competitive Inhibitor Emodin. Journal of Molecular Biology, 2008, 377, 1-8.	4.2	56
31	Protein Kinase CK2 in Human Diseases. Current Medicinal Chemistry, 2008, 15, 1870-1886.	2.4	233
32	Expression and Purification of PI3 Kinase \hat{l}_{\pm} and Development of an ATP Depletion and an AlphaScreen PI3 Kinase Activity Assay. Journal of Biomolecular Screening, 2008, 13, 1035-1040.	2.6	10
33	Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death. Molecular Cancer Therapeutics, 2007, 6, 1869-1876.	4.1	24
34	Induction of cell death in antiestrogen resistant human breast cancer cells by the protein kinase CK2 inhibitor DMAT. Cancer Letters, 2007, 256, 229-237.	7.2	45
35	Evolved to Be Active: Sulfate Ions Define Substrate Recognition Sites of CK2α and Emphasise its Exceptional Role within the CMGC Family of Eukaryotic Protein Kinases. Journal of Molecular Biology, 2007, 370, 427-438.	4.2	54
36	Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction: induction of growth arrest in MCF-7 cancer cells. Organic and Biomolecular Chemistry, 2007, 5, 3963.	2.8	15

#	Article	IF	CITATIONS
37	Purification and characterization of the CK2α′-based holoenzyme, an isozyme of CK2α: A comparative analysis. Protein Expression and Purification, 2006, 47, 651-661.	1.3	24
38	BID, an interaction partner of protein kinase CK2α. Biological Chemistry, 2006, 387, 441-9.	2.5	15
39	The â€~regulatory' β-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation. Oncogene, 2005, 24, 6194-6200.	5.9	16
40	Biochemical characterization of the recombinant human Drosophila homologues Timekeeper and Andante involved in the Drosophila circadian oscillator. Molecular and Cellular Biochemistry, 2005, 274, 151-161.	3.1	14
41	Primary and secondary interactions between $CK2\hat{l}^{\pm}$ and $CK2\hat{l}^{2}$ lead to ring-like structures in the crystals of the CK2 holoenzyme. Molecular and Cellular Biochemistry, 2005, 274, 3-14.	3.1	43
42	HDM2 negatively affects the Chk2-mediated phosphorylation of p53. FEBS Letters, 2005, 579, 2604-2608.	2.8	1
43	Modulation of human checkpoint kinase Chk1 by the regulatory \hat{l}^2 -subunit of protein kinase CK2. Oncogene, 2003, 22, 4933-4942.	5.9	60
44	Crystal Structure of a C-terminal Deletion Mutant of Human Protein Kinase CK2 Catalytic Subunit. Journal of Molecular Biology, 2003, 330, 925-934.	4.2	72
45	Protein kinase CK2 phosphorylates the Fas-associated factor FAF1 in vivo and influences its transport into the nucleus. FEBS Letters, 2003, 546, 218-222.	2.8	20
46	Disruption of the Regulatory \hat{I}^2 Subunit of Protein Kinase CK2 in Mice Leads to a Cell-Autonomous Defect and Early Embryonic Lethality. Molecular and Cellular Biology, 2003, 23, 908-915.	2.3	233
47	Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochemical Journal, 2001, 355, 347-356.	3.7	37
48	Characterization of CK2 holoenzyme variants with regard to crystallization. Molecular and Cellular Biochemistry, 2001, 227, 3-11.	3.1	8
49	Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochemical Journal, 2001, 355, 347.	3.7	27
50	GTP plus water mimic ATP in the active site of protein kinase CK2. Nature Structural Biology, 1999, 6, 1100-1103.	9.7	176
51	Interactions of protein kinase CK2 \hat{l}^2 subunit within the holoenzyme and with other proteins. Molecular and Cellular Biochemistry, 1999, 191, 51-58.	3.1	40
52	Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis, 1999, 20, 391-408.	2.4	384
53	Protein kinase CK2: evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Letters, 1999, 462, 353-357.	2.8	113
54	The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene, 1997, 14, 2683-2688.	5.9	73

#	Article	IF	CITATIONS
55	Casein Kinase 2 Down-Regulation and Activation by Polybasic Peptides Are Mediated by Acidic Residues in the 55-64 Region of the .betaSubunit. A Study with Calmodulin As Phosphorylatable Substrate. Biochemistry, 1994, 33, 4336-4342.	2.5	157
56	Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2beta. FEBS Journal, 1993, 218, 515-521.	0.2	37
57	Assignment of casein kinase 2 alpha sequences to two different human chromosomes. Human Genetics, 1992, 89, 79-82.	3.8	9
58	Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. FEBS Journal, 1992, 204, 293-297.	0.2	148
59	Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. FEBS Journal, 1991, 198, 25-30.	0.2	198
60	Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. FEBS Journal, 1990, 189, 251-257.	0.2	206
61	Characterization of casein kinase II in human colonic carcinomas after heterotransplantation into nude mice. Biochemical and Biophysical Research Communications, 1989, 163, 635-641.	2.1	26