
Klaus Schlaeppi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8913977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contrasting Responses of Arbuscular Mycorrhizal Fungal Families to Simulated Climate Warming and Drying in a Semiarid Shrubland. Microbial Ecology, 2022, 84, 941-944.	1.4	8
2	Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi. Mycorrhiza, 2021, 31, 137-148.	1.3	18
3	Plant chemistry and food web health. New Phytologist, 2021, 231, 957-962.	3.5	4
4	Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome, 2021, 9, 103.	4.9	57
5	Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. New Phytologist, 2021, 232, 1399-1413.	3.5	27
6	Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7, .	4.7	104
7	Soil composition and plant genotype determine benzoxazinoidâ€mediated plant–soil feedbacks in cereals. Plant, Cell and Environment, 2021, 44, 3732-3744.	2.8	8
8	Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean. Frontiers in Microbiology, 2021, 12, 709012.	1.5	14
9	miCROPe 2019 – emerging research priorities towards microbe-assisted crop production. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
10	Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Molecular Ecology Resources, 2020, 20, 1558-1571.	2.2	61
11	Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation. Phytobiomes Journal, 2019, 3, 112-124.	1.4	37
12	Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10, 4841.	5.8	773
13	Editorial overview: Environmental microbiology: #PlantMicrobiome. Current Opinion in Microbiology, 2019, 49, iii-v.	2.3	0
14	Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agriculture, Ecosystems and Environment, 2019, 273, 13-24.	2.5	43
15	Reply to â€~Can we predict microbial keystones?'. Nature Reviews Microbiology, 2019, 17, 194-194.	13.6	29
16	Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 2018, 6, 14.	4.9	399
17	Core microbiomes for sustainable agroecosystems. Nature Plants, 2018, 4, 247-257.	4.7	639
18	Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiology Ecology, 2018, 94, .	1.3	10

KLAUS SCHLAEPPI

#	Article	lF	CITATIONS
19	Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 2018, 3, 189-196.	5.9	136
20	Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 2018, 16, 567-576.	13.6	1,516
21	Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9, 2738.	5.8	861
22	Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 2017, 5, 2.	4.9	152
23	Continuum of root–fungal symbioses for plant nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11574-11576.	3.3	22
24	Root microbiota dynamics of perennial <i>Arabis alpina</i> are dependent on soil residence time but independent of flowering time. ISME Journal, 2017, 11, 43-55.	4.4	133
25	Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla. Frontiers in Plant Science, 2017, 8, 1263.	1.7	13
26	Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance. Frontiers in Plant Science, 2017, 8, 1809.	1.7	45
27	Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing. Frontiers in Plant Science, 2017, 8, 2019.	1.7	46
28	Highâ€resolution community profiling of arbuscular mycorrhizal fungi. New Phytologist, 2016, 212, 780-791.	3.5	104
29	Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular Plant, 2016, 9, 662-681.	3.9	62
30	A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME Journal, 2016, 10, 389-399.	4.4	315
31	Root surface as a frontier for plant microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2299-2300.	3.3	110
32	The Plant Microbiome at Work. Molecular Plant-Microbe Interactions, 2015, 28, 212-217.	1.4	493
33	Quantitative divergence of the bacterial root microbiota in <i>Arabidopsis thaliana</i> relatives. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 585-592.	3.3	539
34	Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 2013, 64, 807-838.	8.6	2,589
35	Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488, 91-95.	13.7	2,127
36	Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant Journal, 2010, 62, 840-851.	2.8	180

#	Article	IF	CITATIONS
37	Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen <i>Phytophthora brassicae</i> . Plant Signaling and Behavior, 2010, 5, 1099-1101.	1.2	25
38	The glutathioneâ€deficient mutant <i>pad2â€1</i> accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore <i>Spodoptera littoralis</i> . Plant Journal, 2008, 55, 774-786.	2.8	182