Fabrizio Chiodo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8913943/publications.pdf

Version: 2024-02-01

43 papers 1,613 citations

279701 23 h-index 302012 39 g-index

47 all docs

47 docs citations

47 times ranked

2664 citing authors

#	Article	IF	CITATIONS
1	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Journal, 2022, 289, 4251-4303.	2.2	39
2	A COVID-19 vaccine candidate composed of the SARS-CoV-2 RBD dimer and <i>Neisseria meningitidis</i> outer membrane vesicles. RSC Chemical Biology, 2022, 3, 242-249.	2.0	15
3	Rhamnose-based glycomimetic for recruitment of endogenous anti-rhamnose antibodies. Tetrahedron Letters, 2022, , 153843.	0.7	O
4	Editorial: The Role of Glycans in Infectious Disease. Frontiers in Microbiology, 2022, 13, .	1.5	0
5	Synthesis of Asparagine Derivatives Harboring a Lewis X Type DCâ€SIGN Ligand and Evaluation of their Impact on Immunomodulation in Multiple Sclerosis. Chemistry - A European Journal, 2021, 27, 2742-2752.	1.7	3
6	Human C-Type Lectins, MGL, DC-SIGN and Langerin, Their Interactions With Endogenous and Exogenous Ligand Patterns., 2021,, 425-441.		1
7	Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry. Analytical Chemistry, 2021, 93, 4666-4675.	3.2	19
8	Combining cross-coupling reaction and Knoevenagel condensation in the synthesis of glyco-BODIPY probes for DC-SIGN super-resolution bioimaging. Bioorganic Chemistry, 2021, 109, 104730.	2.0	10
9	Synthesis and Antibody Binding Studies of Schistosome-Derived Oligo-α-(1-2)-l-Fucosides. Molecules, 2021, 26, 2246.	1.7	1
10	Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Central Science, 2021, 7, 757-767.	5.3	46
11	Emerging glycoâ€based strategies to steer immune responses. FEBS Journal, 2021, 288, 4746-4772.	2.2	22
12	SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chemical Biology, 2021, 16, 1223-1233.	1.6	57
13	Glycan Array Evaluation of Synthetic Epitopes between the Capsular Polysaccharides from <i>Streptococcus pneumoniae</i> 19F and 19A. ACS Chemical Biology, 2021, 16, 1671-1679.	1.6	8
14	Self-Adjuvanting Cancer Vaccines from Conjugation-Ready Lipid A Analogues and Synthetic Long Peptides. Journal of Medicinal Chemistry, 2020, 63, 11691-11706.	2.9	28
15	Carbohydrate-based adjuvants. Drug Discovery Today: Technologies, 2020, 35-36, 57-68.	4.0	24
16	Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. IScience, 2020, 23, 101231.	1.9	24
17	Pairing <i>Bacteroides vulgatus </i> LPS Structure with Its Immunomodulatory Effects on Human Cellular Models. ACS Central Science, 2020, 6, 1602-1616.	5.3	55
18	Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nature Communications, 2020, 11, 4142.	5.8	70

#	Article	IF	CITATIONS
19	Synthetic, Zwitterionic Sp1 Oligosaccharides Adopt a Helical Structure Crucial for Antibody Interaction. ACS Central Science, 2019, 5, 1407-1416.	5.3	52
20	The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectinâ€1. Angewandte Chemie - International Edition, 2019, 58, 18697-18702.	7.2	29
21	The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectinâ€1. Angewandte Chemie, 2019, 131, 18870-18875.	1.6	2
22	Chemically engineered glycan-modified cancer vaccines to mobilize skin dendritic cells. Current Opinion in Chemical Biology, 2019, 53, 167-172.	2.8	9
23	Biocompatible single-chain polymer nanoparticles loaded with an antigen mimetic as potential anticancer vaccine. ACS Macro Letters, 2018, 7, 196-200.	2.3	35
24	Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 339-351.	1.7	42
25	Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry. ACS Nano, 2017, 11, 8257-8264.	7.3	45
26	Synthesis and evaluation of fluorescent Pam3Cys peptide conjugates. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3641-3645.	1.0	12
27	Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydrate Research, 2015, 405, 102-109.	1.1	26
28	Glyconanotechnology and Disease: Gold Nanoparticles Coated with Glycosides as Multivalent Systems for Potential Applications in Diagnostics and Therapy. RSC Drug Discovery Series, 2015, , 89-131.	0.2	2
29	Gold Nanoparticles as Carriers for Synthetic Glycoconjugate Vaccines. Methods in Molecular Biology, 2015, 1331, 159-171.	0.4	4
30	Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein Journal of Organic Chemistry, 2014, 10, 1339-1346.	1.3	69
31	A Quantitative Study of the Intracellular Dynamics of Fluorescently Labelled Glycoâ€Gold Nanoparticles via Fluorescence Correlation Spectroscopy. Small, 2014, 10, 2602-2610.	5 . 2	23
32	Effective Targeting of DC-SIGN by \hat{l}_{\pm} -Fucosylamide Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2014, 25, 2244-2251.	1.8	50
33	Galactofuranose-Coated Gold Nanoparticles Elicit a Pro-inflammatory Response in Human Monocyte-Derived Dendritic Cells and Are Recognized by DC-SIGN. ACS Chemical Biology, 2014, 9, 383-389.	1.6	56
34	Enhanced glycan nanoprofiling by weak anion exchange preparative chromatography, mild acid desialylation, and nanoliquid chromatographyâ€mass spectrometry with nanofluorescence detection. Electrophoresis, 2013, 34, 2350-2356.	1.3	11
35	Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chemical Society Reviews, 2013, 42, 4728.	18.7	280
36	Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Molecular Immunology, 2013, 53, 387-397.	1.0	96

3

#	Article	IF	CITATIONS
37	High Sensitive Detection of Carbohydrate Binding Proteins in an ELISA-Solid Phase Assay Based on Multivalent Glyconanoparticles. PLoS ONE, 2013, 8, e73027.	1.1	26
38	Gold manno-Glyconanoparticles for Intervening in HIV gp120 Carbohydrate-Mediated Processes. Methods in Enzymology, 2012, 509, 21-40.	0.4	27
39	Gold nanoparticles as carriers for a synthetic <i>Streptococcus pneumoniae</i> type 14 conjugate vaccine. Nanomedicine, 2012, 7, 651-662.	1.7	158
40	STD NMR Study of the Interactions between Antibody 2G12 and Synthetic Oligomannosides that Mimic Selected Branches of gp120 Glycans. ChemBioChem, 2012, 13, 1357-1365.	1.3	12
41	Glycoliposomes and Metallic Glyconanoparticles in Glycoscience. , 2012, , 164-202.		1
42	Gold Nanoparticles Coated with Oligomannosides of HIV-1 Glycoprotein gp120 Mimic the Carbohydrate Epitope of Antibody 2G12. Journal of Molecular Biology, 2011, 410, 798-810.	2.0	72
43	Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. SSRN Electronic Journal, 0, , .	0.4	0