
Jianguo Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/891366/publications.pdf Version: 2024-02-01

ΙΙΑΝΟΠΟ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	A biotemplate synthesized hierarchical Sn-doped TiO2 with superior photocatalytic capacity under simulated solar light. Ceramics International, 2021, 47, 8218-8227.	2.3	25
2	Bio-inspired hierarchical nanofibrous SnS/C composite with enhanced anodic performances in lithium-ion batteries. Journal of Alloys and Compounds, 2021, 860, 157897.	2.8	17
3	A Bio-Inspired Nanotubular Na2MoO4/TiO2 Composite as a High-Performance Anodic Material for Lithium-Ion Batteries. Materials, 2021, 14, 357.	1.3	2
4	Natural Cellulose Substance Based Energy Materials. Chemistry - an Asian Journal, 2021, 16, 378-396.	1.7	9
5	Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126076.	2.3	35
6	A hierarchical H3PW12O40/TiO2 nanocomposite with cellulose as scaffold for photocatalytic degradation of organic pollutants. Separation and Purification Technology, 2021, 264, 118427.	3.9	29
7	A Cellulose-Derived Nanofibrous MnO2-TiO2-Carbon Composite as Anodic Material for Lithium-Ion Batteries. Materials, 2021, 14, 3411.	1.3	1
8	Three-Dimensional Cross-Linked Nb ₂ O ₅ Polymorphs Derived from Cellulose Substances: Insights into the Mechanisms of Lithium Storage. ACS Applied Materials & Interfaces, 2021, 13, 39501-39512.	4.0	44
9	Response to letter to the editor re: Comment on "Kubelka-Munk function―– Ceram. Int. 47 (2021) 8218–8227 and "Kubelka-Munk equation―– Ceram. Int. 47 (2021) 13980–13993. Ceramics Internat 2021, 47, 28056.	io 2a ,	0
10	A Cleanable Self-Assembled Nano-SiO2/(PTFE/PEI)n/PPS Composite Filter Medium for High-Efficiency Fine Particulate Filtration. Materials, 2021, 14, 7853.	1.3	0
11	Natural Cellulose Derived Nanocomposites as Anodic Materials for Lithiumâ€ l on Batteries. Chemical Record, 2020, 20, 187-208.	2.9	18
12	A cellulose substance derived nanofibrous CoS–nanoparticle/carbon composite as a high-performance anodic material for lithium-ion batteries. New Journal of Chemistry, 2020, 44, 1846-1857.	1.4	19
13	A bio-inspired nanofibrous Co3O4/TiO2/carbon composite as high-performance anodic material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 819, 153375.	2.8	14
14	Cellulose-Derived Hierarchical g-C3N4/TiO2-Nanotube Heterostructured Composites with Enhanced Visible-Light Photocatalytic Performance. Langmuir, 2020, 36, 5967-5978.	1.6	34
15	Cellulose substance derived nanofibrous activated carbon as a sulfur host for lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125129.	2.3	17
16	A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy. Beilstein Journal of Nanotechnology, 2019, 10, 1270-1279.	1.5	19
17	A hierarchical Ag2O-nanoparticle/TiO2-nanotube composite derived from natural cellulose substance with enhanced photocatalytic performance. Cellulose, 2019, 26, 6683-6700.	2.4	27
18	Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2019, 126, 155-163.	1.9	14

#	Article	IF	CITATIONS
19	Hierarchical nanostructures derived from cellulose for lithium-ion batteries. Dalton Transactions, 2019, 48, 14221-14232.	1.6	13
20	A bioinspired three-dimensional nanofibrous Cu-nanoparticle/SnO2/carbon composite as an anodic material for lithium-ion battery. Applied Surface Science, 2019, 476, 293-302.	3.1	17
21	Three-dimensional TiO2 nanotubes immobilized with Fe2O3 nanoparticles as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 783, 793-800.	2.8	29
22	Natural cellulose based self-assembly towards designed functionalities. Current Opinion in Colloid and Interface Science, 2018, 35, 1-8.	3.4	26
23	A Cellulose Derived Nanotubular MoO ₃ /SnO ₂ Composite with Superior Lithium Storage Properties. ChemistrySelect, 2018, 3, 12469-12477.	0.7	6
24	Nanostructured Titania Templated by Natural Cellulose Substance: Effect of Vanadium-Doping on the Anatase-to-Rutile Phase Transformation. Journal of Nanoscience and Nanotechnology, 2018, 18, 1376-1383.	0.9	1
25	Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 495-503.	2.3	33
26	Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances. Materials Chemistry and Physics, 2018, 219, 399-410.	2.0	19
27	Filter paper derived nanofibrous silica–carbon composite as anodic material with enhanced lithium storage performance. Chemical Engineering Journal, 2017, 317, 673-686.	6.6	60
28	A bio-inspired nanofibrous silicon/carbon composite as an anode material for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 4887-4900.	1.4	26
29	Selfâ€Assembly Approach for Synthesis of Nanotubular Molybdenum Trioxide/Titania Composite Anode for Lithiumâ€lon Batteries. Energy Technology, 2017, 5, 2015-2025.	1.8	20
30	A Bioinspired Nanofibrous Titania/Silicon Composite as an Anode Material for Lithiumâ€ion Batteries. ChemNanoMat, 2017, 3, 120-129.	1.5	14
31	A hierarchical carbon@TiO2@MoS2 nanofibrous composite derived from cellulose substance as an anodic material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 728, 506-517.	2.8	32
32	A hierarchically structured anatase-titania/indium-tin-oxide nanocomposite as an anodic material for lithium-ion batteries. CrystEngComm, 2017, 19, 6972-6978.	1.3	11
33	Co-assembly of photosystem II in nanotubular indium–tin oxide multilayer films templated by cellulose substance for photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 19826-19835.	5.2	18
34	Microtubular SnO ₂ /V ₂ O ₅ Composites Derived from Cellulose Substance as Cathode Materials of Lithiumâ€ion Batteries. ChemistrySelect, 2017, 2, 7987-7995.	0.7	4
35	A Hierarchical, Nanofibrous, Tinâ€Oxide/Silicon Composite Derived from Cellulose as a Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 5667-5676.	0.7	7
36	Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances. , 2017, , 165-202.		1

#	Article	IF	CITATIONS
37	Bio-inspired sandwich-structured carbon/silicon/titanium-oxide nanofibers composite as an anode material for lithium-ion batteries. Composites Part A: Applied Science and Manufacturing, 2017, 101, 273-282.	3.8	29
38	Interfacial Assembly of Photosystem II with Conducting Polymer Films toward Enhanced Photoâ€Bioelectrochemical Cells. Advanced Materials Interfaces, 2017, 4, 1600619.	1.9	25
39	Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase–Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries. Langmuir, 2016, 32, 12338-12343.	1.6	26
40	Celluloseâ€Rich Nanofiberâ€Based Functional Nanoarchitectures. Advanced Materials, 2016, 28, 1143-1158.	11.1	112
41	Integrating photosystem II into a porous TiO ₂ nanotube network toward highly efficient photo-bioelectrochemical cells. Journal of Materials Chemistry A, 2016, 4, 12197-12204.	5.2	55
42	Naturalâ€Celluloseâ€Derived Tinâ€Nanoparticle/Carbonâ€Nanofiber Composite as Anodic Material in Lithiumâ€Ion Batteries. ChemNanoMat, 2016, 2, 1040-1046.	1.5	14
43	Bio-Inspired Hierarchical Nanofibrous Fe ₃ O ₄ –TiO ₂ –Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 17343-17351.	4.0	79
44	Hierarchical SnO ₂ /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2015, 21, 16195-16202.	1.7	67
45	Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale, 2015, 7, 10908-10911.	2.8	55
46	A nanofibrous silver-nanoparticle/titania/carbon composite as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 4354-4360.	5.2	70
47	Bioinspired Hierarchical Nanotubular Titania Immobilized with Platinum Nanoparticles for Photocatalytic Hydrogen Production. Chemistry - A European Journal, 2015, 21, 7345-7349.	1.7	22
48	A nanofibrous polypyrrole/silicon composite derived from cellulose substance as the anode material for lithium-ion batteries. Chemical Communications, 2015, 51, 14590-14593.	2.2	42
49	Enhanced pore filling of spiro-OMeTAD by enlarging the porosity of TiO2 films and its effects on the photovoltaic performance of ss-DSCs. Applied Physics A: Materials Science and Processing, 2015, 118, 1339-1346.	1.1	2
50	Hierarchicalâ€Structured Anataseâ€Titania/Cellulose Composite Sheet with High Photocatalytic Performance and Antibacterial Activity. Chemistry - A European Journal, 2015, 21, 2568-2575.	1.7	40
51	Effect of TiOx compact layer with varied components on the performance of dye-sensitized solar cells. Journal of Alloys and Compounds, 2014, 594, 211-216.	2.8	9
52	Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Advances, 2014, 4, 4901.	1.7	42
53	Hierarchical nanofibrous anatase-titania–cellulose composite and its photocatalytic property. CrystEngComm, 2014, 16, 464-471.	1.3	40
54	Nanofibrous vanadium-doped rutile titania derived from cellulose substance by flame synthesis. CrystEngComm, 2014, 16, 375-384.	1.3	28

#	Article	IF	CITATIONS
55	Surface modification of natural cellulose substances: toward functional materials and applications. Science China Chemistry, 2014, 57, 1672-1682.	4.2	12
56	Nanofibrous silicon/carbon composite sheet derived from cellulose substance as free-standing lithium-ion battery anodes. RSC Advances, 2014, 4, 33981-33985.	1.7	24
57	Growth of aragonite phase calcium carbonate on the surface of a titania-modified filter paper. CrystEngComm, 2014, 16, 2424-2431.	1.3	13
58	Impact of annealing on spiro-OMeTAD and corresponding solid-state dye sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2809-2816.	0.8	41
59	Sputtered TiOx thin film as compact layer for solid-state dye sensitized solar cells. Ceramics International, 2014, 40, 15941-15949.	2.3	7
60	Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. Journal of Materials Chemistry B, 2013, 1, 3477.	2.9	96
61	Ultrathin cellulose film coating of porous alumina membranes for adsorption of superoxide dismutase. Journal of Materials Chemistry B, 2013, 1, 5636.	2.9	10
62	Hierarchical nanotubular clay materials derived from natural cellulose substance. Materials Research Bulletin, 2013, 48, 3223-3231.	2.7	5
63	Reversible self-assembly of ferritin molecules for fabrication of size controlled microspheres and microrods. New Journal of Chemistry, 2013, 37, 2624.	1.4	2
64	Hierarchical fibrous titanium metal derived from cellulose substance. CrystEngComm, 2013, 15, 8924.	1.3	5
65	Highly sensitive colourimetric anion chemosensors fabricated by functional surface modification of natural cellulose substance. RSC Advances, 2013, 3, 5318.	1.7	12
66	Heterogeneous nanotubular anatase/rutile titania composite derived from natural cellulose substance and its photocatalytic property. CrystEngComm, 2013, 15, 5586.	1.3	38
67	Colorimetric detection of gaseous ammonia by polyaniline nanocoating of natural cellulose substances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 166-172.	2.3	31
68	High-Performance UV Photodetection of Unique ZnO Nanowires from Zinc Carbonate Hydroxide Nanobelts. ACS Applied Materials & Interfaces, 2013, 5, 5861-5867.	4.0	38
69	Nanographite sheets derived from polyaniline nanocoating of cellulose nanofibers. Materials Research Bulletin, 2013, 48, 429-434.	2.7	9
70	Precise Size Control over Ultrafine Rutile Titania Nanocrystallites in Hierarchical Nanotubular Silica/Titania Hybrids with Efficient Photocatalytic Activity. Chemistry - A European Journal, 2013, 19, 10971-10981.	1.7	33
71	Nanofibrous Rutile-Titania/Graphite Composite Derived from Natural Cellulose Substance. Journal of Nanoscience and Nanotechnology, 2013, 13, 582-588.	0.9	17
72	Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. Journal of Materials Chemistry, 2012, 22, 12562.	6.7	86

#	Article	IF	CITATIONS
73	Facile fabrication of free-standing microtubes composed of colloidal spheres. New Journal of Chemistry, 2012, 36, 1729.	1.4	2
74	Hierarchical nanotubular titanium nitride derived from natural cellulose substance and its electrochemical properties. Chemical Communications, 2012, 48, 9992.	2.2	20
75	Antibacterial activity of hierarchical nanofibrous titania–carbon composite material deposited with silver nanoparticles. New Journal of Chemistry, 2012, 36, 2568.	1.4	16
76	Colorimetric detection of cysteine by surface functionalization of natural cellulose substance. Sensors and Actuators B: Chemical, 2012, 171-172, 878-885.	4.0	27
77	Flame synthesis of hierarchical nanotubular rutile titania derived from natural cellulose substance. Chemical Communications, 2011, 47, 10551.	2.2	40
78	Hierarchical nanofibrous silicon as replica of natural cellulose substance. Journal of Materials Chemistry, 2011, 21, 7161.	6.7	26
79	Cellulose substance with reversible photo-responsive wettability by surface modification. Journal of Materials Chemistry, 2011, 21, 17519.	6.7	54
80	Hierarchical Mesoporous Silica Nanotubes Derived from Natural Cellulose Substance. ACS Applied Materials & Interfaces, 2011, 3, 3272-3275.	4.0	52
81	Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres. Journal of Materials Chemistry, 2011, 21, 651-656.	6.7	35
82	Immobilization of Oligonucleotides onto Zirconia-Modified Filter Paper and Specific Molecular Recognition. Langmuir, 2011, 27, 12284-12288.	1.6	29
83	Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue. Materials Research Bulletin, 2011, 46, 1814-1818.	2.7	16
84	Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Current Opinion in Colloid and Interface Science, 2011, 16, 470-481.	3.4	64
85	Facile Fabrication of Superhydrophobic Cellulose Materials by a Nanocoating Approach. Chemistry Letters, 2010, 39, 20-21.	0.7	42
86	Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chemical Communications, 2010, 46, 6042.	2.2	57
87	Titania nanotube/hollow sphere hybrid material: Dual-template synthesis and photocatalytic property. Materials Research Bulletin, 2010, 45, 536-541.	2.7	21
88	Hierarchical, Titania oated, Carbon Nanofibrous Material Derived from a Natural Cellulosic Substance. Chemistry - A European Journal, 2010, 16, 7730-7740.	1.7	81
89	Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibres. Chemical Communications, 2010, 46, 6096.	2.2	23
90	Functional polymeric hybrid nanotubular materials derived from natural cellulose substances. Journal of Materials Chemistry, 2010, 20, 10217.	6.7	13

#	Article	IF	CITATIONS
91	Natural Cellulosic Substance Derived Nano-structured Materials. Advanced Topics in Science and Technology in China, 2010, , 133-164.	0.0	0
92	Fabrication of natural cellulose substance derived hierarchical polymeric materials. Journal of Materials Chemistry, 2009, 19, 3764.	6.7	36
93	SEM <i>In Situ</i> Study on Deformation Behavior of Cu and Cu/Ni Films under Three-Point Bending. Materials Transactions, 2007, 48, 2795-2798.	0.4	13
94	Free-standing nanofibrous platinum sheets and their conductivity. Chemical Communications, 2006, , 4688.	2.2	8
95	Electro-conductive nanotubular sheet of indium tin oxide as fabricated from the cellulose template. Journal of Materials Chemistry, 2006, 16, 292-297.	6.7	62
96	Nanotubings of titania/polymer composite: template synthesis and nanoparticle inclusion. Journal of Materials Chemistry, 2006, 16, 4257.	6.7	20
97	Formation of Positively Charged Copper Hydroxide Nanostrands and Their Structural Characterization. Chemistry of Materials, 2006, 18, 1795-1802.	3.2	66
98	Biomolecular Modification of Hierarchical Cellulose Fibers through Titania Nanocoating. Angewandte Chemie - International Edition, 2006, 45, 2883-2886.	7.2	71
99	Dried Foam Films: Self-Standing, Water-Free, Reversed Bilayers of Amphiphilic Compounds. Angewandte Chemie - International Edition, 2005, 44, 4532-4535.	7.2	23
100	Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method. Chemical Communications, 2005, , 1264.	2.2	90
101	Latex particle-encapsulated titania/polymer composite nanotubings: free-standing, one-dimensional package of colloidal particles. Chemical Communications, 2005, , 2680.	2.2	0
102	Enantioselective anion exchange on a positively charged poly(l-lysine) layer assembled on thin TiO2-gel films. New Journal of Chemistry, 2005, 29, 1058.	1.4	4
103	Electrostatic Trapping of Double-Stranded DNA by Using Cadmium Hydroxide Nanostrands. Nano Letters, 2005, 5, 97-100.	4.5	31
104	Bundle-like Assemblies of Cadmium Hydroxide Nanostrands and Anionic Dyes. Journal of the American Chemical Society, 2005, 127, 8296-8297.	6.6	53
105	Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chemical Communications, 2005, , 1717.	2.2	102
106	Fourier transform surface-enhanced Raman scattering of single-layer nucleolipid Langmuir–Blodgett films on silver island film substrates. Journal of Colloid and Interface Science, 2004, 270, 309-314.	5.0	6
107	A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle. Chemical Communications, 2004, , 1008.	2.2	68
108	Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides. Journal of the American Chemical Society, 2003, 125, 11834-11835.	6.6	305

#	Article	IF	CITATIONS
109	Zirconiaâ^'Titania Nanofilm with Composition Gradient. Nano Letters, 2002, 2, 669-672.	4.5	25
110	Preparation of Nanoporous Titania Films by Surface Solâ^'Gel Process Accompanied by Low-Temperature Oxygen Plasma Treatment. Langmuir, 2002, 18, 9048-9053.	1.6	75
111	Replication of dendrimer monolayer as nanopores in titania ultrathin filmElectronic supplementary information (ESI) available: experimental details and TEM micrograph. See http://www.rsc.org/suppdata/cc/b2/b206208a/. Chemical Communications, 2002, , 2070-2071.	2.2	22
112	Molecular Recognition Inside of Multifunctionalized Mesoporous Silicas:Â Toward Selective Fluorescence Detection of Dopamine and Glucosamine. Journal of the American Chemical Society, 2001, 123, 11510-11511.	6.6	223
113	Structure Control on Photodimerization of Uracil and Thymine Moieties in Nucleolipid Langmuirâ^'Blodgett Films by the Molecular Recognition Effect at the Air/Water Interface. Langmuir, 2001, 17, 2228-2234.	1.6	15
114	Spectroscopic studies on molecular recognition capabilities of a nucleolipid bearing thymine headgroup to adenosine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1587-1593.	2.0	10
115	FT-IR studies of N-hexadecyl-5-iminomethyl-8-hydroxyquinoline Langmuir–Blodgett films. Materials Chemistry and Physics, 2000, 62, 236-240.	2.0	2
116	Ftir Studies on LB Film of Amphiphile with Schiff Base as Headgroup and Its Copper Complex. Spectroscopy Letters, 2000, 33, 301-321.	0.5	3
117	Molecular Recognition Capabilities of a Nucleolipid Amphiphile (3â€~,5â€~-Distearoyl)-2â€~-Deoxythymidine to Adenosine at the Air/Water Interface and Langmuirâ^'Blodgett Films Studied by Molecular Spectroscopy. Langmuir, 2000, 16, 7701-7707.	1.6	35
118	FT-SERS Studies on Molecular Recognition Capabilities of Monolayers of Novel Nucleolipid Amphiphiles. Langmuir, 2000, 16, 3937-3940.	1.6	22
119	Molecular recognition of nucleolipid amphiphile octadecanoyl ester of 1-(2-carboxyethyl) adenine to the complementary nucleobases: part II. A Fourier transform infrared spectroscopic study of Langmuir–Blodgett films. Thin Solid Films, 1998, 325, 210-217.	0.8	13
120	Molecular recognition of nucleolipid amphiphile octadecanoyl ester of 1-(2-carboxyethyl) adenine to the complementary nucleobases. Part I: characterization of the monolayer behavior at the air/water interface and photodimerization in the Langmuir–Blodgett film matrix under ultraviolet irradiation. Thin Solid Films, 1998, 326, 217-222.	0.8	11
121	Fourier Transform Infrared Spectroscopic Investigation on Langmuir-Blodgett Films of Octadecanoyl Ester of 1-(2-Carboxyethyl) Thymine: Molecular Orientation, Molecular Recognition to Complementary Base of Nucleic Acid and Order-Disorder Transition. Spectroscopy Letters, 1997, 30, 1441-1466.	0.5	4
122	Synthesis of Novel Nucleolipid Amphiphiles. Synthetic Communications, 1997, 27, 681-690.	1.1	11