Victor J Dirita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Campylobacter jejuni: molecular biology and pathogenesis. Nature Reviews Microbiology, 2007, 5, 665-679.	28.6	662
2	ldentification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Molecular Microbiology, 2004, 52, 471-484.	2.5	365
3	Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Molecular Microbiology, 1992, 6, 451-458.	2.5	257
4	Regulatory Networks Controlling <i>Vibrio cholerae</i> Virulence Gene Expression. Infection and Immunity, 2007, 75, 5542-5549.	2.2	221
5	A Two-Component Regulatory System, CsrR-CsrS, Represses Expression of Three <i>Streptococcus pyogenes</i> Virulence Factors, Hyaluronic Acid Capsule, Streptolysin S, and Pyrogenic Exotoxin B. Infection and Immunity, 1999, 67, 5298-5305.	2.2	221
6	A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biology, 2007, 8, R130.	8.8	214
7	Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell, 1991, 64, 29-37.	28.9	211
8	The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Molecular Microbiology, 2000, 38, 67-84.	2.5	186
9	Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Molecular Microbiology, 2001, 40, 214-224.	2.5	184
10	A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Molecular Microbiology, 1997, 23, 323-331.	2.5	164
11	Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Molecular Microbiology, 2003, 50, 687-702.	2.5	160
12	Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Molecular Microbiology, 2002, 43, 119-134.	2.5	154
13	From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Current Opinion in Microbiology, 2003, 6, 186-190.	5.1	151
14	Bacterial Virulence Gene Regulation: An Evolutionary Perspective. Annual Review of Microbiology, 2000, 54, 519-565.	7.3	146
15	Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Molecular Microbiology, 1994, 14, 17-29.	2.5	143
16	Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Molecular Microbiology, 1997, 25, 1099-1111.	2.5	132
17	Analysis of ToxRâ€dependent transcription activation of <i>ompU</i> , the gene encoding a major envelope protein in <i>Vibrio cholerae</i> . Molecular Microbiology, 1998, 29, 235-246.	2.5	120
18	A <i>Campylobacter jejuni znuA</i> Orthologue Is Essential for Growth in Low-Zinc Environments and Chick Colonization. Journal of Bacteriology, 2009, 191, 1631-1640.	2.2	113

#	Article	IF	CITATIONS
19	Zinc Competition among the Intestinal Microbiota. MBio, 2012, 3, e00171-12.	4.1	113
20	Molecular cloning and transcriptional regulation of <i>ompT</i> , a ToxRâ€repressed gene in <i>Vibrio cholerae</i> . Molecular Microbiology, 2000, 35, 189-203.	2.5	99
21	Cytotoxic Cell Vacuolating Activity from Vibrio cholerae Hemolysin. Infection and Immunity, 2000, 68, 1700-1705.	2.2	96
22	Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni. PLoS Pathogens, 2012, 8, e1002602.	4.7	92
23	Analysis of an Autoregulatory Loop Controlling ToxT, Cholera Toxin, and Toxin-Coregulated Pilus Production in <i>Vibrio cholerae</i> . Journal of Bacteriology, 1999, 181, 2584-2592.	2.2	92
24	Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16403-16408.	7.1	85
25	Repression of virulence genes by phosphorylation-dependent oligomerization ofCsrR at target promoters in S. pyogenes. Molecular Microbiology, 2001, 40, 976-990.	2.5	82
26	Methylation of the T-DNA inAgrobacterium tumefaciensand In several crown gall tumors. Nucleic Acids Research, 1983, 11, 159-174.	14.5	79
27	The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Molecular Microbiology, 2006, 59, 1779-1789.	2.5	79
28	Natural Transformation of Campylobacter jejuni Requires Components of a Type II Secretion System. Journal of Bacteriology, 2003, 185, 5408-5418.	2.2	75
29	Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Molecular Microbiology, 2003, 47, 1459-1473.	2.5	73
30	Peptidoglycan ld-Carboxypeptidase Pgp2 Influences Campylobacter jejuni Helical Cell Shape and Pathogenic Properties and Provides the Substrate for the dl-Carboxypeptidase Pgp1. Journal of Biological Chemistry, 2014, 289, 8007-8018.	3.4	69
31	TcpH Influences Virulence Gene Expression in Vibrio cholerae by Inhibiting Degradation of the Transcription Activator TcpP. Journal of Bacteriology, 2004, 186, 8309-8316.	2.2	68
32	Cj1496c Encodes a Campylobacter jejuni Glycoprotein That Influences Invasion of Human Epithelial Cells and Colonization of the Chick Gastrointestinal Tract. Infection and Immunity, 2006, 74, 4715-4723.	2.2	60
33	The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq. PLoS ONE, 2013, 8, e73586.	2.5	59
34	DNA Binding and ToxR Responsiveness by the Wing Domain of TcpP, an Activator of Virulence Gene Expression in Vibrio cholerae. Molecular Cell, 2003, 12, 157-165.	9.7	57
35	SMAUC: Analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods, 2021, 193, 16-26.	3.8	57
36	Growth and Laboratory Maintenance of <i>Campylobacter jejuni</i> . Current Protocols in Microbiology, 2008, 10, Unit 8A.1.1-8A.1.7.	6.5	51

#	Article	IF	CITATIONS
37	Contribution of CsrR-Regulated Virulence Factors to the Progress and Outcome of Murine Skin Infections by Streptococcus pyogenes. Infection and Immunity, 2004, 72, 623-628.	2.2	49
38	Singleâ€molecule tracking in live <scp><i>V</i></scp> <i>ibrio cholerae</i> reveals that <scp>ToxR</scp> recruits the membraneâ€bound virulence regulator <scp>TcpP</scp> to the <scp><i>toxT</i></scp> promoter. Molecular Microbiology, 2015, 96, 4-13.	2.5	49
39	Vibrio cholerae ToxT Independently Activates the Divergently Transcribed aldA and tagA Genes. Journal of Bacteriology, 2005, 187, 7890-7900.	2.2	44
40	Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology. Molecules, 2014, 19, 12116-12149.	3.8	43
41	Methylation-dependent DNA discrimination in natural transformation of <i>Campylobacter jejuni</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8053-E8061.	7.1	42
42	Characterization of CetA and CetB, a bipartite energy taxis system in <i>Campylobacter jejuni</i> . Molecular Microbiology, 2008, 69, 1091-1103.	2.5	41
43	Small-Molecule Inhibitors of <i>toxT</i> Expression in Vibrio cholerae. MBio, 2013, 4, .	4.1	39
44	Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Molecular Microbiology, 2005, 56, 1062-1077.	2.5	36
45	Transient Transcriptional Activation of the <i>Vibrio cholerae</i> El Tor Virulence Regulator ToxT in Response to Culture Conditions. Infection and Immunity, 1999, 67, 2178-2183.	2.2	36
46	Deletion analysis of the mannopine synthase gene promoter in sunflower crown gall tumors and Agrobacterium tumefaciens. Molecular Genetics and Genomics, 1987, 207, 233-241.	2.4	35
47	Conserved Residues in the HAMP Domain Define a New Family of Proposed Bipartite Energy Taxis Receptors. Journal of Bacteriology, 2009, 191, 375-387.	2.2	31
48	Regulated intramembrane proteolysis of the virulence activator <scp>TcpP</scp> in <scp><i>V</i></scp> <i>ibrio cholerae</i> is initiated by the tailâ€specific protease (<scp>T</scp> sp). Molecular Microbiology, 2015, 97, 822-831.	2.5	31
49	High-Throughput Sequencing of Campylobacter jejuni Insertion Mutant Libraries Reveals mapA as a Fitness Factor for Chicken Colonization. Journal of Bacteriology, 2014, 196, 1958-1967.	2.2	30
50	Characterization of Campylobacter jejuni RacRS Reveals Roles in the Heat Shock Response, Motility, and Maintenance of Cell Length Homogeneity. Journal of Bacteriology, 2012, 194, 2342-2354.	2.2	27
51	A putative Vibrio cholerae two-component system controls a conserved periplasmic protein in response to the antimicrobial peptide polymyxin B. PLoS ONE, 2017, 12, e0186199.	2.5	26
52	Transcript analysis of TR DNA in octopine-type crown gall tumors. Molecular Genetics and Genomics, 1984, 194, 159-165.	2.4	24
53	Genetic Manipulation of Campylobacter jejuni. Current Protocols in Microbiology, 2008, 10, Unit 8A.2.1-8A.2.17.	6.5	24
54	Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. Journal of Biological Chemistry, 2016, 291, 22686-22702.	3.4	23

#	Article	lF	CITATIONS
55	Virulence gene regulation inside and outside. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 657-665.	4.0	19
56	A model for Vibrio cholerae colonization of the human intestine. Journal of Theoretical Biology, 2011, 289, 247-258.	1.7	19
57	Chemical Biology Applied to the Study of Bacterial Pathogens. Infection and Immunity, 2015, 83, 456-469.	2.2	17
58	Narrow-Spectrum Inhibitors of Campylobacter jejuni Flagellar Expression and Growth. Antimicrobial Agents and Chemotherapy, 2015, 59, 3880-3886.	3.2	16
59	The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni. MBio, 2016, 7, .	4.1	15
60	Multiple regulatory systems in Vibrio cholerae pathogenesis. Trends in Microbiology, 1994, 2, 37-38.	7.7	14
61	Aerobic Metabolism in Vibrio cholerae Is Required for Population Expansion during Infection. MBio, 2020, 11, .	4.1	14
62	Identification of a major, CsrRS-regulated secreted protein of Group A streptococcus. Microbial Pathogenesis, 2001, 31, 81-89.	2.9	11
63	Characterization and Localization of the Campylobacter jejuni Transformation System Proteins CtsE, CtsP, and CtsX. Journal of Bacteriology, 2015, 197, 636-645.	2.2	10
64	Three-Component Regulatory System Controlling Virulence in Vibrio cholerae. , 0, , 351-365.		10
65	Vibrio cholerae requires oxidative respiration through the bd-I and cbb3 oxidases for intestinal proliferation. PLoS Pathogens, 2022, 18, e1010102.	4.7	9
66	Independent Promoter Recognition by TcpP Precedes Cooperative Promoter Activation by TcpP and ToxR. MBio, 2021, 12, e0221321.	4.1	7
67	Pharmaceutical applications of biotechnology: Promise and reality. Editorial overview. Current Opinion in Biotechnology, 1993, 4, 711-713.	6.6	6
68	Black Holes and Antivirulence Genes: Selection for Gene Loss as Part of the Evolution of Bacterial Pathogens. , 0, , 109-122.		6
69	Molecular Basis of Vibrio cholerae Pathogenesis. , 2001, , 457-508.		5
70	Phosphate Transporter PstSCAB of Campylobacter jejuni Is a Critical Determinant of Lactate-Dependent Growth and Colonization in Chickens. Journal of Bacteriology, 2020, 202, .	2.2	5
71	Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity. Chirality, 2020, 32, 899-906.	2.6	5
72	Experimental Chick Colonization by <i>Campylobacter jejuni</i> . Current Protocols in Microbiology, 2008, 11, Unit 8A.3.	6.5	5

#	Article	IF	CITATIONS
73	Complete Annotated Genome Sequences of Three Campylobacter jejuni Strains Isolated from Naturally Colonized Farm-Raised Chickens. Genome Announcements, 2017, 5, .	0.8	4
74	Generation and Screening of an Insertion Sequencing-Compatible Mutant Library of Campylobacter jejuni. Methods in Molecular Biology, 2017, 1512, 257-272.	0.9	4
75	After COVID-19 We Will Need a New Research System. We Need To Start Planning Now. MBio, 2020, 11, .	4.1	4
76	The Evolution of Antibiotic Resistance. , 0, , 221-241.		3
77	Vibrio cholerae and cholera: molecular to global perspectives. Trends in Microbiology, 1995, 3, 79-80.	7.7	2
78	Complete Genome Sequence and Annotation of a Campylobacter jejuni Strain, MTVDSCj20, Isolated from a Naturally Colonized Farm-Raised Chicken. Genome Announcements, 2014, 2, .	0.8	2
79	Genome Sequences of Campylobacter jejuni 81-176 Variants with Enhanced Fitness Relative to the Parental Strain in the Chicken Gastrointestinal Tract. Genome Announcements, 2014, 2, .	0.8	2
80	Mycobacterial Evolution: Insights from Genomics and Population Genetics. , 0, , 301-325.		2
81	The Study of Microbial Adaptation by Long-Term Experimental Evolution. , 0, , 55-81.		2
82	The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens. , 0, , 83-107.		2
83	Evolution of Pathogens in Soil. , 0, , 131-146.		2
84	Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of Beneficence and the Origins of Pathogenesis. , 2014, , 147-166.		1
85	The Evolution of Bacterial Toxins. , 2014, , 167-188.		1
86	Natural Competence and Transformation in <i>Campylobacter</i> ., 0, , 559-570.		1
87	Classic Spotlight: Phage Bring Punch to the Party. Journal of Bacteriology, 2016, 198, 202-202.	2.2	1
88	Evolution of Enteric Pathogens. , 0, , 273-299.		1
89	The Evolution of Human Fungal Pathogens. , 0, , 327-346.		1
90	Studying Evolution Using Genome Sequence Data. , 0, , 11-33.		1

#	Article	IF	CITATIONS
91	Function, Evolution, and Classification of Macromolecular Transport Systems. , 0, , 189-219.		1
92	Group A Streptococcus and Staphylococcus aureus: Evolution, Reemergence, and Strain Diversification. , 2014, , 251-272.		0
93	ToxR Recruits TcpP to the toxT Promoter in the Vibrio Cholerae Virulence Pathway. Biophysical Journal, 2014, 106, 398a.	0.5	Ο
94	Understanding the Pathogenicity of Vibrio Cholerae via Two-Color Live-Cell Super-Resolution Microscopy. Biophysical Journal, 2014, 106, 204a-205a.	0.5	0
95	Elucidating Membrane-Bound Transcription Regulation in Vibrio Cholerae via Single-Molecule Imaging. Biophysical Journal, 2016, 110, 647a.	0.5	Ο
96	Investigating the Dynamics of Vibrio Cholerae Virulence Initiation by Stics and Single Molecule Tracking. Biophysical Journal, 2016, 110, 646a.	0.5	0
97	Classic Spotlight: Persistence Persists. Journal of Bacteriology, 2017, 199, .	2.2	0
98	Classic Spotlight: Selected Highlights from the First 100 Years of the <i>Journal of Bacteriology</i> . Journal of Bacteriology, 2017, 199, .	2.2	0
99	Midwest Microbial Pathogenesis Conference Special Sections. Journal of Bacteriology, 2018, 200, .	2.2	0
100	ASM Vibrio2017 Conference Special Issue. Journal of Bacteriology, 2018, 200, .	2.2	0
101	2018 Midwest Microbial Pathogenesis Conference Special Sections. Journal of Bacteriology, 2019, 201, .	2.2	0
102	Part I Overview. , 0, , 1-9.		0
103	Part II Overview. , 0, , 123-129.		0
104	Regulation of Virulence in Vibrio Cholerae by the ToxR System. Medical Intelligence Unit, 1995, , 79-93.	0.2	0
105	Population Dynamics of Bacterial Pathogens. , 0, , 35-53.		0
106	The role of TarA in regulating gene expression and physiological processes in Vibrio cholerae. FASEB Journal, 2015, 29, 766.14.	0.5	0