List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912764/publications.pdf Version: 2024-02-01

FENCOE CHEN

#	Article	IF	CITATIONS
1	Stability and bifurcation of a discrete predator-prey system with Allee effect and other food resource for the predators. Journal of Applied Mathematics and Computing, 2023, 69, 529-548.	2.5	9
2	Stability and Bifurcation in a Leslie–Gower Predator–Prey Model with Allee Effect. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	20
3	Stability Analysis of a Leslie–Gower Model with Strong Allee Effect on Prey and Fear Effect on Predator. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	15
4	Modeling Allee Effect in the Leslie-Gower Predator–Prey System Incorporating a Prey Refuge. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	12
5	Global Stability of Symbiotic Model of Commensalism and Parasitism with Harvesting in Commensal Populations. WSEAS Transactions on Mathematics, 2022, 21, 424-432.	0.5	8
6	Positive Periodic Solution of a Discrete Lotka-volterra Commensal Symbiosis Model with Michaelis-menten Type Harvesting. WSEAS Transactions on Mathematics, 2022, 21, 515-523.	0.5	9
7	On the Existence of Positive Periodic Solution of an Amensalism Model with Beddington-DeAngelis Functional Response. WSEAS Transactions on Mathematics, 2022, 21, 572-579.	0.5	2
8	Dynamic behaviors of a nonautonomous predator–prey system with Holling type II schemes and a prey refuge. Advances in Difference Equations, 2021, 2021, .	3.5	7
9	Stability and Bifurcation in an SI Epidemic Model with Additive Allee Effect and Time Delay. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150060.	1.7	17
10	The Influence of Fear Effect to a Discrete-Time Predator-Prey System with Predator Has Other Food Resource. Mathematics, 2021, 9, 865.	2.2	18
11	Dynamic Behaviors of a Single Species Stage Structure Model with Michaelis–Menten-TypeJuvenile Population Harvesting. Mathematics, 2020, 8, 1281.	2.2	9
12	Stability and Bifurcation in a Predator–Prey Model with the Additive Allee Effect and the Fear Effect. Mathematics, 2020, 8, 1280.	2.2	30
13	Dynamics of a Discrete Allelopathic Phytoplankton Model with Infinite Delays and Feedback Controls. Discrete Dynamics in Nature and Society, 2020, 2020, 1-17.	0.9	0
14	The Extinction of a Non-Autonomous Allelopathic Phytoplankton Model with Nonlinear Inter-Inhibition Terms and Feedback Controls. Mathematics, 2020, 8, 173.	2.2	4
15	Stability and Bifurcation in a Logistic Model with Allee Effect and Feedback Control. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050231.	1.7	15
16	Note on the persistence and stability property of a stage-structured prey–predator model with cannibalism and constant attacking rate. Advances in Difference Equations, 2020, 2020, .	3.5	4
17	Stability and bifurcation in a single species logistic model with additive Allee effect and feedback control. Advances in Difference Equations, 2020, 2020, .	3.5	19
18	Stability and bifurcation analysis in a single-species stage structure system with Michaelis–Menten-type harvesting. Advances in Difference Equations, 2020, 2020, .	3.5	12

#	Article	IF	CITATIONS
19	On a predator-prey system interaction under fluctuating water level with nonselective harvesting. Open Mathematics, 2020, 18, 458-475.	1.0	6
20	Global analysis of epidemic spreading with a general feedback mechanism on complex networks. Advances in Difference Equations, 2019, 2019, .	3.5	8
21	Dynamic behaviors of a Lotka-Volterra type predator-prey system with Allee effect on the predator species and density dependent birth rate on the prey species. Open Mathematics, 2019, 17, 1186-1202.	1.0	11
22	The influence of partial closure for the populations to a non-selective harvesting Lotka–Volterra discrete amensalism model. Advances in Difference Equations, 2019, 2019, .	3.5	10
23	Extinction of a two species competitive stage-structured system with the effect of toxic substance and harvesting. Open Mathematics, 2019, 17, 856-873.	1.0	8
24	Dynamical analysis of a two species amensalism model with Beddington–DeAngelis functional response and Allee effect on the second species. Nonlinear Analysis: Real World Applications, 2019, 48, 71-93.	1.7	49
25	Hopf bifurcation and stability in a Beddington-DeAngelis predator-prey model with stage structure for predator and time delay incorporating prey refuge. Open Mathematics, 2019, 17, 141-159.	1.0	28
26	The bifurcation analysis and optimal feedback mechanism for an SIS epidemic model on networks. Advances in Difference Equations, 2019, 2019, .	3.5	4
27	Dynamic Behaviors of a Competitive System with Beddington-DeAngelis Functional Response. Discrete Dynamics in Nature and Society, 2019, 2019, 1-12.	0.9	2
28	Extinction and stability of an impulsive system with pure delays. Applied Mathematics Letters, 2019, 91, 128-136.	2.7	14
29	Dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator cannibalism. Advances in Difference Equations, 2019, 2019, .	3.5	29
30	Dynamic of a nonautonomous two-species impulsive competitive system with infinite delays. Open Mathematics, 2019, 17, 776-794.	1.0	1
31	Dynamical analysis of a logistic model with impulsive Holling type-II harvesting. Advances in Difference Equations, 2018, 2018, .	3.5	23
32	Global Attractivity and Extinction of a Discrete Competitive System with Infinite Delays and Single Feedback Control. Discrete Dynamics in Nature and Society, 2018, 2018, 1-14.	0.9	8
33	Dynamic Behaviors of a Nonautonomous Impulsive Competitive System with the Effect of Toxic Substance. Discrete Dynamics in Nature and Society, 2018, 2018, 1-6.	0.9	1
34	Dynamic behaviors of a Lotka–Volterra commensal symbiosis model with density dependent birth rate. Advances in Difference Equations, 2018, 2018, .	3.5	21
35	Permanence and global stability of a May cooperative system with strong and weak cooperative partners. Advances in Difference Equations, 2018, 2018, .	3.5	11
36	Dynamics of an impulsive model of plankton allelopathy with delays. Journal of Applied Mathematics and Computing, 2017, 55, 749-762.	2.5	6

#	Article	IF	CITATIONS
37	Dynamic behaviors of a discrete Lotka-Volterra competitive system with the effect of toxic substances and feedback controls. Advances in Difference Equations, 2017, 2017, .	3.5	7
38	Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination. Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 296-310.	3.3	49
39	Extinction in Two-Species Nonlinear Discrete Competitive System. Discrete Dynamics in Nature and Society, 2016, 2016, 1-10.	0.9	7
40	Permanence and global attractivity of a discrete pollination mutualism in plant-pollinator system with feedback controls. Advances in Difference Equations, 2016, 2016, .	3.5	15
41	Global attractivity of a discrete cooperative system incorporating harvesting. Advances in Difference Equations, 2016, 2016, .	3.5	21
42	Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances. Open Mathematics, 2016, 14, 1157-1173.	1.0	17
43	Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type Il schemes. Advances in Difference Equations, 2016, 2016, .	3.5	26
44	Permanence and global attractivity of an impulsive delay Logistic model. Applied Mathematics Letters, 2016, 62, 92-100.	2.7	16
45	Influence of single feedback control variable on an autonomous Holling-II type cooperative system. Journal of Mathematical Analysis and Applications, 2016, 435, 874-888.	1.0	57
46	Extinction in a Lotka–Volterra competitive system with impulse and the effect of toxic substances. Applied Mathematical Modelling, 2016, 40, 2015-2024.	4.2	16
47	Extinction in two species nonautonomous nonlinear competitive system. Applied Mathematics and Computation, 2016, 274, 119-124.	2.2	34
48	Almost Periodic Solution of a Discrete Commensalism System. Discrete Dynamics in Nature and Society, 2015, 2015, 1-11.	0.9	26
49	Dynamic Behaviors of a Discrete Periodic Predator-Prey-Mutualist System. Discrete Dynamics in Nature and Society, 2015, 2015, 1-11.	0.9	4
50	Permanence of the periodic predator-prey-mutualist system. Advances in Difference Equations, 2015, 2015, .	3.5	15
51	Global stability of May cooperative system with feedback controls. Advances in Difference Equations, 2015, 2015, .	3.5	17
52	Extinction in a discrete Lotka–Volterra competitive system with the effect of toxic substances and feedback controls. International Journal of Biomathematics, 2015, 08, 1550012.	2.9	16
53	Global stability in a competition model of plankton allelopathy with infinite delay. Journal of Systems Science and Complexity, 2015, 28, 1070-1079.	2.8	13
54	Almost periodic solution of a modified Leslie–Gower predator–prey model with Holling-type II schemes and mutual interference. International Journal of Biomathematics, 2014, 07, 1450028.	2.9	12

#	Article	IF	CITATIONS
55	Global Attractivity of an Integrodifferential Model of Mutualism. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	12
56	Global Stability of a Discrete Mutualism Model. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	9
57	Dynamic Behaviors of a Discrete Lotka-Volterra Competition System with Infinite Delays and Single Feedback Control. Abstract and Applied Analysis, 2014, 2014, 1-19.	0.7	6
58	Note on the Stability Property of a Cooperative System Incorporating Harvesting. Discrete Dynamics in Nature and Society, 2014, 2014, 1-5.	0.9	18
59	Positive periodic solution of the discrete Lasota–Wazewska model with impulse. Journal of Difference Equations and Applications, 2014, 20, 406-412.	1.1	4
60	Almost periodic solutions of a discrete almost periodic logistic equation with delay. Applied Mathematics and Computation, 2014, 232, 743-751.	2.2	17
61	Global stability of a predator-prey system with stage structure and mutual interference. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 173-187.	0.9	18
62	Dynamic behaviors of a Lotka–Volterra predator–prey model incorporating a prey refuge and predator mutual interference. Applied Mathematics and Computation, 2013, 219, 7945-7953.	2.2	54
63	Influence of predator mutual interference and prey refuge on Lotka–Volterra predator–prey dynamics. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3174-3180.	3.3	34
64	Global stability of a stage-structured predator–prey system. Applied Mathematics and Computation, 2013, 223, 45-53.	2.2	27
65	Extinction and almost periodic solutions of a discrete Gilpin–Ayala type population model. Journal of Difference Equations and Applications, 2013, 19, 719-737.	1.1	6
66	Permanence of a stage-structured predator–prey system. Applied Mathematics and Computation, 2013, 219, 8856-8862.	2.2	37
67	Influence of feedback controls on an autonomous Lotka–Volterra competitive system with infinite delays. Nonlinear Analysis: Real World Applications, 2013, 14, 402-413.	1.7	43
68	Dynamic Behaviors of a Nonautonomous Discrete Predator-Prey System Incorporating a Prey Refuge and Holling Type II Functional Response. Discrete Dynamics in Nature and Society, 2012, 2012, 1-14.	0.9	7
69	Stability Property for the Predator-Free Equilibrium Point of Predator-Prey Systems with a Class of Functional Response and Prey Refuges. Discrete Dynamics in Nature and Society, 2012, 2012, 1-5.	0.9	6
70	GLOBAL STABILITY OF A STAGE-STRUCTURED PREDATOR–PREY MODEL WITH MODIFIED LESLIE–GOWER A HOLLING-TYPE II SCHEMES. International Journal of Biomathematics, 2012, 05, 1250057.	ND _{2.9}	32
71	Partial survival and extinction of a delayed predator–prey model with stage structure. Applied Mathematics and Computation, 2012, 219, 4157-4162.	2.2	35
72	Global asymptotical stability of the positive equilibrium of the Lotka–Volterra prey–predator model incorporating a constant number of prey refuges. Nonlinear Analysis: Real World Applications, 2012, 13, 2790-2793.	1.7	48

#	Article	IF	CITATIONS
73	Permanence and global attractivity of a periodic predator–prey system with mutual interference and impulses. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 444-453.	3.3	17
74	Global stability of a delay differential equations model of plankton allelopathy. Applied Mathematics and Computation, 2012, 218, 7155-7163.	2.2	12
75	Extinction in a nonautonomous Lotka–Volterra competitive system with infinite delay and feedback controls. Nonlinear Analysis: Real World Applications, 2012, 13, 2214-2226.	1.7	38
76	Almost periodic solutions of a discrete Lotka–Volterra competition system with delays. Nonlinear Analysis: Real World Applications, 2011, 12, 2344-2355.	1.7	20
77	Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect. Nonlinear Analysis: Real World Applications, 2011, 12, 2467-2473.	1.7	26
78	Asymptotic behavior of the reaction–diffusion model of plankton allelopathy with nonlocal delays. Nonlinear Analysis: Real World Applications, 2011, 12, 1748-1758.	1.7	16
79	Dynamic Behaviors of a Harvesting Leslie-Gower Predator-Prey Model. Discrete Dynamics in Nature and Society, 2011, 2011, 1-14.	0.9	26
80	Global Attractivity of a Generalized Lotka–Volterra Competition Model. Differential Equations and Dynamical Systems, 2010, 18, 303-315.	1.0	6
81	Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Analysis: Real World Applications, 2010, 11, 246-252.	1.7	141
82	Note on the persistent property of a feedback control system with delays. Nonlinear Analysis: Real World Applications, 2010, 11, 1061-1066.	1.7	17
83	Permanence, extinction and global attractivity of the periodic Gilpin–Ayala competition system with impulses. Nonlinear Analysis: Real World Applications, 2010, 11, 1537-1551.	1.7	38
84	Almost periodic solution of an impulsive differential equation model of plankton allelopathy. Nonlinear Analysis: Real World Applications, 2010, 11, 2296-2301.	1.7	32
85	GLOBAL ANALYSIS OF A HARVESTED PREDATOR–PREY MODEL INCORPORATING A CONSTANT PREY REFUGE. International Journal of Biomathematics, 2010, 03, 205-223.	2.9	26
86	On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model. Discrete Dynamics in Nature and Society, 2010, 2010, 1-9.	0.9	2
87	Uniqueness of Limit Cycles for a Class of Cubic Systems with Two Invariant Straight Lines. Discrete Dynamics in Nature and Society, 2010, 2010, 1-17.	0.9	0
88	Harvesting of a Single-Species System Incorporating Stage Structure and Toxicity. Discrete Dynamics in Nature and Society, 2009, 2009, 1-16.	0.9	7
89	On a Leslie–Gower predator–prey model incorporating a prey refuge. Nonlinear Analysis: Real World Applications, 2009, 10, 2905-2908.	1.7	131
90	Permanence and global attractivity of a discrete Schoener's competition model with delays. Mathematical and Computer Modelling, 2009, 49, 1607-1617.	2.0	16

#	Article	IF	CITATIONS
91	Almost periodic solutions of a discrete almost periodic logistic equation. Mathematical and Computer Modelling, 2009, 50, 254-259.	2.0	33
92	On a mutualism model with feedback controls. Applied Mathematics and Computation, 2009, 214, 581-587.	2.2	35
93	Almost periodic solution for a Volterra model with mutual interference and Beddington–DeAngelis functional response. Applied Mathematics and Computation, 2009, 214, 548-556.	2.2	48
94	Global stability of a Leslie–Gower predator–prey model with feedback controls. Applied Mathematics Letters, 2009, 22, 1330-1334.	2.7	47
95	Extinction in periodic competitive stage-structured Lotka–Volterra model with the effects of toxic substances. Journal of Computational and Applied Mathematics, 2009, 231, 143-153.	2.0	35
96	Dynamic behaviors of the impulsive periodic multi-species predator–prey system. Computers and Mathematics With Applications, 2009, 57, 248-265.	2.7	29
97	Permanence in a discrete Lotka–Volterra competition model with deviating arguments. Nonlinear Analysis: Real World Applications, 2008, 9, 2150-2155.	1.7	26
98	Permanence for the discrete mutualism model with time delays. Mathematical and Computer Modelling, 2008, 47, 431-435.	2.0	50
99	Stability of the boundary solution of a nonautonomous predator–prey system with the Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications, 2008, 344, 1057-1067.	1.0	25
100	Permanence of a nonlinear integro-differential prey-competition model with infinite delays. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 2290-2297.	3.3	11
101	Permanence, extinction and periodic solution of the predator–prey system with Beddington–DeAngelis functional response and stage structure for prey. Nonlinear Analysis: Real World Applications, 2008, 9, 207-221.	1.7	57
102	Dynamic Behaviors of a General Discrete Nonautonomous System of Plankton Allelopathy with Delays. Discrete Dynamics in Nature and Society, 2008, 2008, 1-22.	0.9	3
103	Dynamic behaviors of a delay differential equation model of plankton allelopathy. Journal of Computational and Applied Mathematics, 2007, 206, 733-754.	2.0	46
104	On a nonautonomous predator-prey model with prey dispersal. Applied Mathematics and Computation, 2007, 184, 809-822.	2.2	4
105	Permanence of a discrete n-species food-chain system with time delays. Applied Mathematics and Computation, 2007, 185, 719-726.	2.2	24
106	Permanence of a discrete N-species cooperation system with time delays and feedback controls. Applied Mathematics and Computation, 2007, 186, 23-29.	2.2	41
107	Permanence for an integrodifferential model of mutualism. Applied Mathematics and Computation, 2007, 186, 30-34.	2.2	29
108	On a delayed nonautonomous ratio-dependent predator–prey model with Holling type functional response and diffusion. Applied Mathematics and Computation, 2007, 192, 358-369.	2.2	18

#	Article	IF	CITATIONS
109	Note on the permanence of a competitive system with infinite delay and feedback controls. Nonlinear Analysis: Real World Applications, 2007, 8, 680-687.	1.7	63
110	Permanence of a single species discrete model with feedback control and delay. Applied Mathematics Letters, 2007, 20, 729-733.	2.7	22
111	Permanence and global attractivity of the discrete Gilpin–Ayala type population model. Computers and Mathematics With Applications, 2007, 53, 1214-1227.	2.7	27
112	Periodicity and stability of a nonlinear periodic integro-differential prey-competition model with infinite delays. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 876-885.	3.3	9
113	The permanence and extinction of a nonlinear growth rate single-species non-autonomous dispersal models with time delays. Nonlinear Analysis: Real World Applications, 2007, 8, 1536-1550.	1.7	8
114	Existence, uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays. Journal of Computational and Applied Mathematics, 2006, 194, 368-387.	2.0	30
115	Permanence and global stability of nonautonomous Lotka–Volterra system with predator–prey and deviating arguments. Applied Mathematics and Computation, 2006, 173, 1082-1100.	2.2	23
116	Permanence in nonautonomous multi-species predator–prey system with feedback controls. Applied Mathematics and Computation, 2006, 173, 694-709.	2.2	34
117	A Predator–Prey system with viral infection and anorexia response. Applied Mathematics and Computation, 2006, 175, 1455-1483.	2.2	3
118	Permanence and global attractivity of a delayed periodic logistic equation. Applied Mathematics and Computation, 2006, 177, 118-127.	2.2	12
119	Permanence and extinction in nonlinear single and multiple species system with diffusion. Applied Mathematics and Computation, 2006, 177, 410-426.	2.2	18
120	Global stability of a single species model with feedback control and distributed time delay. Applied Mathematics and Computation, 2006, 178, 474-479.	2.2	16
121	Permanence of a delayed non-autonomous Gilpin–Ayala competition model. Applied Mathematics and Computation, 2006, 179, 55-66.	2.2	10
122	On the periodic solutions of periodic multi-species Kolmogorov type competitive system with delays and feedback controls. Applied Mathematics and Computation, 2006, 180, 366-373.	2.2	13
123	Global attractivity in an almost periodic multi-species nonlinear ecological model. Applied Mathematics and Computation, 2006, 180, 376-392.	2.2	39
124	Almost periodic solution of the non-autonomous two-species competitive model with stage structure. Applied Mathematics and Computation, 2006, 181, 685-693.	2.2	23
125	The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls. Applied Mathematics and Computation, 2006, 181, 803-815.	2.2	33
126	Permanence and global attractivity of a discrete multispecies Lotka–Volterra competition predator–prey systems. Applied Mathematics and Computation, 2006, 182, 3-12.	2.2	68

#	Article	IF	CITATIONS
127	Stability analysis of a prey–predator model with holling type III response function incorporating a prey refuge. Applied Mathematics and Computation, 2006, 182, 672-683.	2.2	200
128	Extinction in two dimensional nonautonomous Lotka–Volterra systems with the effect of toxic substances. Applied Mathematics and Computation, 2006, 182, 684-690.	2.2	33
129	Permanence of periodic Holling type predator–prey system with stage structure for prey. Applied Mathematics and Computation, 2006, 182, 1849-1860.	2.2	24
130	The permanence and global attractivity of Lotka–Volterra competition system with feedback controls. Nonlinear Analysis: Real World Applications, 2006, 7, 133-143.	1.7	81
131	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.2	61
132	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="htt. Journal of Differential Average conditions for permanence and extinction in nonautonomous Gilpin–Ayala competition model. Nonlinear Analysis: Real World Applications, 2006, 7, 895-915.	1.7	47
133	Some new results on the permanence and extinction of nonautonomous Gilpin–Ayala type competition model with delays. Nonlinear Analysis: Real World Applications, 2006, 7, 1205-1222.	1.7	57
134	On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay. Journal of Computational and Applied Mathematics, 2005, 180, 33-49.	2.0	190
135	Positive periodic solutions of neutral Lotka–Volterra system with feedback control. Applied Mathematics and Computation, 2005, 162, 1279-1302.	2.2	116
136	Global asymptotic stability in n-species non-autonomous Lotka–Volterra competitive systems with infinite delays and feedback control. Applied Mathematics and Computation, 2005, 170, 1452-1468.	2.2	37
137	On a periodic multi-species ecological model. Applied Mathematics and Computation, 2005, 171, 492-510.	2.2	33
138	Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model. Applied Mathematics and Computation, 2005, 171, 760-770.	2.2	29
139	DYNAMIC BEHAVIOR OF A NONLINEAR SINGLE SPECIES DIFFUSIVE SYSTEM. International Journal of Modeling, Simulation, and Scientific Computing, 2005, 08, 399-417.	1.4	8
140	Periodicity in a ratio-dependent predator-prey system with stage structure for predator. Journal of Applied Mathematics, 2005, 2005, 153-169.	0.9	18
141	Periodicity in a logistic type system with several delays. Computers and Mathematics With Applications, 2004, 48, 35-44.	2.7	59
142	Almost periodic solutions of n-species competitive system with feedback controls. Journal of Mathematical Analysis and Applications, 2004, 294, 503-522.	1.0	61
143	Existence and global attractivity of an almost periodic ecological model. Applied Mathematics and Computation, 2004, 157, 449-475.	2.2	33
144	Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control. Applied Mathematics and Computation, 2004, 158, 45-68.	2.2	71

#	Article	IF	CITATIONS
145	Periodicity in a food-limited population model with toxicants and state dependent delays. Journal of Mathematical Analysis and Applications, 2003, 288, 136-146.	1.0	81