
Zang-Ho Shon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul. Environmental Pollution, 2019, 247, 763-774.	7.5	89
2	Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea. Environmental Science and Pollution Research, 2014, 21, 6612-6622.	5.3	72
3	Analysis of ammonia variation in the urban atmosphere. Atmospheric Environment, 2013, 65, 177-185.	4.1	71
4	Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmospheric Environment, 2012, 59, 540-550.	4.1	64
5	Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmospheric Environment, 2015, 101, 125-133.	4.1	64
6	Comparison of source apportionment of PM 2.5 using receptor models in the main hub port city of East Asia: Busan. Atmospheric Environment, 2017, 148, 115-127.	4.1	62
7	Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. Journal of Hazardous Materials, 2008, 150, 754-764.	12.4	59
8	Long-term trend in NO2 and NO levels and their emission ratio in relation to road traffic activities in East Asia. Atmospheric Environment, 2011, 45, 3120-3131.	4.1	59
9	Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea. Atmospheric Environment, 2012, 61, 148-158.	4.1	55
10	Monitoring of Atmospheric Mercury at a Global Atmospheric Watch (GAW) Site on An-Myun Island, Korea. Water, Air, and Soil Pollution, 2007, 185, 149-164.	2.4	50
11	Influence of ship emissions on ozone concentrations around coastal areas during summer season. Atmospheric Environment, 2010, 44, 713-723.	4.1	50
12	Long-term changes in PM10 levels in urban air in relation with air quality control efforts. Atmospheric Environment, 2011, 45, 3309-3317.	4.1	48
13	Evaluation of the DMS flux and its conversion to SO2 over the southern ocean. Atmospheric Environment, 2001, 35, 159-172.	4.1	43
14	Photochemistry of reduced sulfur compounds in a landfill environment. Atmospheric Environment, 2005, 39, 4803-4814.	4.1	34
15	Impact of emission control strategy on NO2 in urban areas of Korea. Atmospheric Environment, 2011, 45, 808-812.	4.1	32
16	Analysis of water-soluble ions and their precursor gases over diurnal cycle. Atmospheric Research, 2013, 132-133, 309-321.	4.1	32
17	Monitoring of atmospheric reduced sulfur compounds and their oxidation in two coastal landfill areas. Atmospheric Environment, 2007, 41, 974-988.	4.1	31
18	Characteristics of Asian Dust Transport Based on Synoptic Meteorological Analysis over Korea. Journal of the Air and Waste Management Association, 2006, 56, 306-316	1.9	30

ZANG-HO SHON

#	Article	IF	CITATIONS
19	Relationship between reactive oxygen species and water-soluble organic compounds: Time-resolved benzene carboxylic acids measurement in the coastal area during the KORUS-AQ campaign. Environmental Pollution, 2017, 231, 1-12.	7.5	30
20	Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment. Chemosphere, 2014, 111, 312-319.	8.2	23
21	Assessment of the photochemistry of OH and NO3 on Jeju Island during the Asian-dust-storm period in the spring of 2001. Chemosphere, 2004, 55, 1127-1142.	8.2	22
22	A modeling study of halogen chemistry's role in marine boundary layer ozone. Atmospheric Environment, 2002, 36, 4289-4298.	4.1	21
23	Demonstration of long-term increases in tropospheric O3 levels: Causes and potential impacts. Chemosphere, 2013, 92, 1520-1528.	8.2	21
24	Reduced sulfur compounds in ambient air surrounding an industrial region in Korea. Environmental Monitoring and Assessment, 2009, 148, 109-125.	2.7	20
25	A Review of Atmospheric Mercury in the Polar Environment. Critical Reviews in Environmental Science and Technology, 2009, 39, 552-584.	12.8	20
26	Identification of control parameters for the sulfur gas storability with bag sampling methods. Analytica Chimica Acta, 2012, 738, 51-58.	5.4	19
27	Photochemical oxidation of reduced sulfur compounds in an urban location based on short time monitoring data. Chemosphere, 2006, 63, 1859-1869.	8.2	18
28	Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity. Science of the Total Environment, 2017, 599-600, 400-412.	8.0	18
29	Environmental fate of gaseous elemental mercury at an urban monitoring site based on long-term measurements in Korea (1997–2005). Atmospheric Environment, 2008, 42, 142-155.	4.1	17
30	The effect of man made source processes on the behavior of total gaseous mercury in air: A comparison between four urban monitoring sites in Seoul Korea. Science of the Total Environment, 2011, 409, 3801-3811.	8.0	17
31	An oil spill accident and its impact on ozone levels in the surrounding coastal regions. Atmospheric Environment, 2011, 45, 1312-1322.	4.1	17
32	Nationwide shift in CO concentration levels in urban areas of Korea after 2000. Journal of Hazardous Materials, 2011, 188, 235-246.	12.4	17
33	Monitoring of reduced sulfur compounds in the atmosphere of Gosan, Jeju Island during the Spring of 2001. Chemosphere, 2004, 54, 515-526.	8.2	15
34	Photochemical oxidation and dispersion of gaseous sulfur compounds from natural and anthropogenic sources around a coastal location. Atmospheric Environment, 2009, 43, 3015-3023.	4.1	14
35	Dispersion and photochemical oxidation of reduced sulfur compounds in and around a large industrial complex in Korea. Atmospheric Environment, 2008, 42, 4269-4279.	4.1	13
36	Photochemical analyses of ozone and related compounds under various environmental conditions. Atmospheric Environment, 2012, 47, 446-458.	4.1	13

ZANG-HO SHON

#	Article	IF	CITATIONS
37	Impact of international Maritime Organization 2020 sulfur content regulations on port air quality at international hub port. Journal of Cleaner Production, 2022, 347, 131298.	9.3	13
38	Long-term variations in PM2.5 emission from open biomass burning in Northeast Asia derived from satellite-derived data for 2000–2013. Atmospheric Environment, 2015, 107, 342-350.	4.1	12
39	Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000–2015. Chemosphere, 2019, 224, 417-427.	8.2	11
40	Influence of meteorological conditions on trans-Pacific transport of Asian dust during spring season. Journal of Aerosol Science, 2008, 39, 1003-1017.	3.8	9
41	An investigation into the relationship between the major chemical components of particulate matter in urban air. Chemosphere, 2014, 95, 387-394.	8.2	9
42	Comparison of impacts of aircraft emissions within the boundary layer on the regional ozone in South Korea. Atmospheric Environment, 2015, 117, 169-179.	4.1	9
43	Comprehensive study of a long-lasting severe haze in Seoul megacity and its impacts on fine particulate matter and health. Chemosphere, 2021, 268, 129369.	8.2	9
44	Fractionation of secondary organic carbon in aerosol in relation to the trafficborne emission of semivolatile organic compounds. Atmospheric Environment, 2012, 50, 225-233.	4.1	8
45	Chemical Characteristics of Size-Resolved Aerosols in Coastal Areas during KORUS-AQ Campaign; Comparison of Ion Neutralization Model. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 387-399.	2.3	8
46	Assessment of long-range oriented source and oxidative potential on the South-west shoreline, Korea: Molecular marker receptor models during shipborne measurements. Environmental Pollution, 2021, 281, 116979.	7.5	8
47	Characteristics of malodor pollutants and aromatic VOCs around an urban valley in Korea. Environmental Monitoring and Assessment, 2009, 157, 259-275.	2.7	7
48	Temporal Variations in Optical Properties and Direct Radiative Forcing of Different Aerosol Chemical Components in Seoul using Hourly Aerosol Sampling. Journal of Korean Society for Atmospheric Environment, 2014, 30, 1-17.	1.1	7
49	Effects of natural and anthropogenic emissions on the composition and toxicity of aerosols in the marine atmosphere. Science of the Total Environment, 2022, 806, 150928.	8.0	7
50	Characteristics of Atmospheric Metalliferous Particles during Large-Scale Fireworks in Korea. Advances in Meteorology, 2015, 2015, 1-13.	1.6	6
51	Carbonaceous aerosol in ambient air: Parallel measurements between water cyclone and carbon analyzer. Particuology, 2019, 44, 153-158.	3.6	6
52	Impact of temporary emission reduction from a large-scale coal-fired power plant on air quality. Atmospheric Environment: X, 2020, 5, 100056.	1.4	6
53	DMS photochemistry during the Asian dust-storm period in the Spring of 2001: model simulations vs. field observations. Chemosphere, 2005, 58, 149-161.	8.2	5
54	Influence of an enhanced traffic volume around beaches in the short period of summer on ozone. Atmospheric Environment, 2013, 71, 376-388.	4.1	5

ZANG-HO SHON

#	Article	IF	CITATIONS
55	National Emissions of Greenhouse Gases and Air Pollutants from Commercial Aircraft in the Troposphere over South Korea. Terrestrial, Atmospheric and Oceanic Sciences, 2014, 25, 61.	0.6	5
56	Contribution of Biomass Burning and Secondary Organic Carbon to Water Soluble Organic Carbon at a Suburban Site. Journal of Korean Society for Atmospheric Environment, 2018, 34, 259-268.	1.1	4
57	Emission and Cytotoxicity of Surgical Smoke: Cholesta-3,5-Diene Released from Pyrolysis of Prostate Tissue. Atmosphere, 2018, 9, 381.	2.3	3
58	Characteristics of the Emissions and Concentrations of Air Pollutants with Change in Traffic Volume during the Beach Opening Period in Busan. Journal of Environmental Science International, 2012, 21, 1149-1162.	0.2	3
59	Temporal Variability of Reduced Sulfur Compounds (RSC) Collected in Tedlar Bag: Simulation of Sample Stability in the Emission Sources. Journal of Korean Society for Atmospheric Environment, 2011, 27, 281-290.	1.1	3
60	Emissions of Air Pollutants and Greenhouse Gases from Aircraft Activities at the Small Scale Airports. Journal of Environmental Science International, 2013, 22, 823-836.	0.2	3
61	Rapid Changes in CO Concentration Levels at Seven Roadside Locations in Seoul before and after 2000. Asian Journal of Atmospheric Environment, 2010, 4, 26-32.	1.1	2
62	Characteristics of Ozone Precursor Emissions and POCP in the Biggest Port City in Korea. Asian Journal of Atmospheric Environment, 2015, 9, 146-157.	1.1	2
63	Air Pollution and Its Association with the Greenland Ice Sheet Melt. Sustainability, 2021, 13, 65.	3.2	1
64	Meteorological and Chemical Behavior of Gaseous Sulfur Compounds in and around an Urban Valley. Terrestrial, Atmospheric and Oceanic Sciences, 2010, 21, 971.	0.6	0
65	Characteristics of Malodor Pollutants and Their Dispersion Measured in Several Industrial Source Regions in Yangsan. Journal of Environmental Science International, 2009, 18, 1103-1114.	0.2	0
66	A Study of Ozone Photochemistry in Different Physico-chemical Properties of Air Masses around the Mexico City Metropolitan Area (MCMA) Using Aircraft Observations in 2006. Journal of Korean Society for Atmospheric Environment, 2010, 26, 118-136.	1.1	0