
Rachel Creamer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil quality – A critical review. Soil Biology and Biochemistry, 2018, 120, 105-125.	4.2	1,441
2	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	13.7	635
3	Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Current Opinion in Environmental Sustainability, 2012, 4, 529-538.	3.1	213
4	Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science and Policy, 2014, 38, 45-58.	2.4	193
5	Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 2016, 97, 112-124.	2.1	184
6	Monitoring soil bacteria with community-level physiological profiles using Biologâ,,¢ ECO-plates in the Netherlands and Europe. Applied Soil Ecology, 2016, 97, 23-35.	2.1	131
7	Eco-functionality of organic matter in soils. Plant and Soil, 2020, 455, 1-22.	1.8	116
8	A critical review of current methods in earthworm ecology: From individuals to populations. European Journal of Soil Biology, 2010, 46, 67-73.	1.4	98
9	A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environmental Science and Policy, 2016, 56, 39-48.	2.4	80
10	Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter?. Ecological Indicators, 2014, 36, 409-418.	2.6	74
11	Measuring respiration profiles of soil microbial communities across Europe using MicroRespâ,,¢ method. Applied Soil Ecology, 2016, 97, 36-43.	2.1	74
12	Selection of biological indicators appropriate for European soil monitoring. Applied Soil Ecology, 2016, 97, 12-22.	2.1	71
13	Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Frontiers in Environmental Science, 2015, 3, .	1.5	69
14	Traits of collembolan life-form indicate land use types and soil properties across an European transect. Applied Soil Ecology, 2016, 97, 69-77.	2.1	68
15	Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment, 2016, 556, 276-290.	3.9	61
16	The life of soils: Integrating the who and how of multifunctionality. Soil Biology and Biochemistry, 2022, 166, 108561.	4.2	57
17	Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Scientific Reports, 2019, 9, 605.	1.6	56
18	The elusive role of soil quality in nutrient cycling: a review. Soil Use and Management, 2016, 32, 476-486.	2.6	53

#	Article	IF	CITATIONS
19	Clay illuviation provides a long-term sink for C sequestration in subsoils. Scientific Reports, 2017, 7, 45635.	1.6	53
20	Functional Land Management for managing soil functions: A case-study of the trade-off between primary productivity and carbon storage in response to the intervention of drainage systems in Ireland. Land Use Policy, 2015, 47, 42-54.	2.5	52
21	Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environmental Research Letters, 2017, 12, 124007.	2.2	49
22	Harvesting European knowledge on soil functions and land management using multi riteria decision analysis. Soil Use and Management, 2019, 35, 6-20.	2.6	48
23	Do elevated soil concentrations of metals affect the diversity and activity of soil invertebrates in the long-term?. Soil Use and Management, 2008, 24, 37-46.	2.6	46
24	A Field-Scale Decision Support System for Assessment and Management of Soil Functions. Frontiers in Environmental Science, 2019, 7, .	1.5	46
25	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	2.4	46
26	Implications of the proposed Soil Framework Directive on agricultural systems in Atlantic Europe – a review. Soil Use and Management, 2010, 26, 198-211.	2.6	45
27	Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biology and Biochemistry, 2016, 103, 464-470.	4.2	43
28	European scale analysis of phospholipid fatty acid composition of soils to establish operating ranges. Applied Soil Ecology, 2016, 97, 49-60.	2.1	43
29	The influence of aggregate size fraction and horizon position on microbial community composition. Applied Soil Ecology, 2018, 127, 19-29.	2.1	43
30	The Impact of Policy Instruments on Soil Multifunctionality in the European Union. Sustainability, 2017, 9, 407.	1.6	41
31	Soil exo-enzyme activities across Europe—The influence of climate, land-use and soil properties. Applied Soil Ecology, 2016, 97, 44-48.	2.1	39
32	Soil multifunctionality: Synergies and tradeâ€offs across <scp>European</scp> climatic zones and land uses. European Journal of Soil Science, 2021, 72, 1640-1654.	1.8	39
33	Soil bacterial community structure and functional responses across a long-term mineral phosphorus (Pi) fertilisation gradient differ in grazed and cut grasslands. Applied Soil Ecology, 2019, 138, 134-143.	2.1	38
34	Modeling of Soil Functions for Assessing Soil Quality: Soil Biodiversity and Habitat Provisioning. Frontiers in Environmental Science, 2019, 7, .	1.5	37
35	The practicalities and pitfalls of establishing a policyâ€relevant and costâ€effective soil biological monitoring scheme. Integrated Environmental Assessment and Management, 2013, 9, 276-284.	1.6	34
36	Using machine learning to predict soil bulk density on the basis of visual parameters: Tools for in-field and post-field evaluation. Geoderma, 2018, 318, 137-147.	2.3	32

#	Article	IF	CITATIONS
37	A review of the role of excess soil moisture conditions in constraining farm practices under Atlantic conditions. Soil Use and Management, 2012, 28, 580-589.	2.6	31
38	A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. Applied Soil Ecology, 2016, 97, 3-11.	2.1	29
39	Effects of soil type and depth on carbon distribution within soil macroaggregates from temperate grassland systems. Geoderma, 2018, 313, 52-56.	2.3	29
40	An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biology and Fertility of Soils, 2009, 45, 623-633.	2.3	28
41	Pedotransfer functions for Irish soils – estimation of bulk density (<i>Ï</i> _b) per horizon type. Soil, 2016, 2, 25-39.	2.2	25
42	The impact of cattle dung pats on earthworm distribution in grazed pastures. BMC Ecology, 2018, 18, 59.	3.0	25
43	Improving forest soil carbon models using spatial data and geostatistical approaches. Geoderma, 2014, 232-234, 487-499.	2.3	23
44	Multi-Functional Land Use Is Not Self-Evident for European Farmers: A Critical Review. Frontiers in Environmental Science, 2020, 8, .	1.5	22
45	Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. Journal of Contaminant Hydrology, 2014, 170, 53-67.	1.6	21
46	Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Applied Soil Ecology, 2016, 97, 86-97.	2.1	21
47	A framework for determining unsaturated zone water quality time lags at catchment scale. Agriculture, Ecosystems and Environment, 2017, 236, 234-242.	2.5	21
48	Functional Land Management: Bridging the Think-Do-Gap using a multi-stakeholder science policy interface. Ambio, 2018, 47, 216-230.	2.8	20
49	The effects of increasing land use intensity on soil nematodes: A turn towards specialism. Functional Ecology, 2019, 33, 2003-2016.	1.7	20
50	Soil mass and grind size used for sample homogenization strongly affect permanganate-oxidizable carbon (POXC) values, with implications for its use as a national soil health indicator. Geoderma, 2021, 383, 114742.	2.3	20
51	Insensitivity of soil biological communities to phosphorus fertilization in intensively managed grassland systems. Grass and Forage Science, 2016, 71, 139-152.	1.2	17
52	Digging deeper: Understanding the contribution of subsoil carbon for climate mitigation, a case study of Ireland. Environmental Science and Policy, 2019, 98, 61-69.	2.4	17
53	Soil biodiversity data: Actual and potential use in European and national legislation. Applied Soil Ecology, 2016, 97, 125-133.	2.1	16
54	Soil protection for a sustainable future: options for a soil monitoring network for Ireland. Soil Use and Management, 2017, 33, 346-363.	2.6	15

#	Article	IF	CITATIONS
55	Assessing the Climate Regulation Potential of Agricultural Soils Using a Decision Support Tool Adapted to Stakeholders' Needs and Possibilities. Frontiers in Environmental Science, 2019, 7, .	1.5	15
56	Modelling soil bulk density at the landscape scale and its contributions to C stock uncertainty. Biogeosciences, 2013, 10, 4691-4704.	1.3	14
57	Trafficking intensity index for soil compaction management in grasslands. Soil Use and Management, 2021, 37, 504-518.	2.6	14
58	Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil: a largeâ€scale study in Ireland. European Journal of Soil Science, 2018, 69, 414-428.	1.8	13
59	Grass <scp>VESS</scp> : a modification of the visual evaluation of soil structure method for grasslands. Soil Use and Management, 2018, 34, 37-47.	2.6	12
60	Assessing multifunctionality of agricultural soils: Reducing the biodiversity tradeâ€off. European Journal of Soil Science, 2021, 72, 1624-1639.	1.8	12
61	A note on the Hybrid Soil Moisture Deficit Model v2.0. Irish Journal of Agricultural and Food Research, 2015, 54, 126-131.	0.2	11
62	Microbial community structure and function respond more strongly to temporal progression than to the application of slurry in an Irish grassland. Applied Soil Ecology, 2017, 120, 97-104.	2.1	11
63	The application of expert knowledge in Bayesian networks to predict soil bulk density at the landscape scale. European Journal of Soil Science, 2015, 66, 930-941.	1.8	10
64	A Decision Support Model for Assessing the Water Regulation and Purification Potential of Agricultural Soils Across Europe. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	10
65	A flexible selection tool for the inclusion of soil biology methods in the assessment of soil multifunctionality. Soil Biology and Biochemistry, 2022, 166, 108514.	4.2	10
66	Validating digital soil maps using soil taxonomic distance: A case study of Ireland. Geoderma Regional, 2015, 5, 188-197.	0.9	8
67	A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation. Irish Journal of Agricultural and Food Research, 2016, 55, 91-99.	0.2	8
68	Application of Dexter's soil physical quality index: an Irish case study. Irish Journal of Agricultural and Food Research, 2017, 56, 45-53.	0.2	8
69	Does soil biology hold the key to optimized slurry management? A manifesto for research. Soil Use and Management, 2011, 27, 464-469.	2.6	7
70	The effects of earthworms, botanical diversity and fertiliser type on the vertical distribution of soil nutrients and plant nutrient acquisition. Biology and Fertility of Soils, 2013, 49, 1189-1201.	2.3	7
71	Exploring Climate mart Land Management for Atlantic Europe. Agricultural and Environmental Letters, 2016, 1, 160029.	0.8	7
72	Indicators for monitoring soil biodiversity. Integrated Environmental Assessment and Management, 2009, 5, 717-719.	1.6	4

#	Article	IF	CITATIONS
73	How to make regenerative practices work on the farm: A modelling framework. Agricultural Systems, 2022, 198, 103371.	3.2	4
74	An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization. Frontiers in Microbiology, 2020, 11, 682.	1.5	3
75	Soil Functions—An Introduction. World Soils Book Series, 2018, , 201-208.	0.1	2
76	Soil Fertility and Nutrient Cycling. World Soils Book Series, 2018, , 223-234.	0.1	1
77	The Living Soil: Biodiversity and Functions. World Soils Book Series, 2018, , 257-265.	0.1	Ο
78	Limestone Lowlands. World Soils Book Series, 2018, , 153-161.	0.1	0
79	Soil Classification. World Soils Book Series, 2018, , 39-54.	0.1	Ο
80	A History of Soil Research with Emphasis on Pedology. World Soils Book Series, 2018, , 1-9.	0.1	0
81	Editorial for special issue on "understanding soil functions – from ped to planet― European Journal of Soil Science, 2021, 72, 1493.	1.8	Ο
82	Hill Landscapes. World Soils Book Series, 2018, , 129-139.	0.1	0
83	Soils and Productivity. World Soils Book Series, 2018, , 209-222.	0.1	Ο
84	Rolling Lowlands. World Soils Book Series, 2018, , 163-174.	0.1	0
85	Drumlin Landscapes. World Soils Book Series, 2018, , 175-184.	0.1	Ο
86	Soils and Carbon Storage. World Soils Book Series, 2018, , 245-256.	0.1	0
87	Mountain Landscapes. World Soils Book Series, 2018, , 119-128.	0.1	Ο