Harumi Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912469/publications.pdf

Version: 2024-02-01

		218677	175258
56	2,699	26	52
papers	citations	h-index	g-index
56	56	56	3384
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. Journal of Immunology, 2020, 205, 27-35.	0.8	11
2	Ras homolog gene family H (RhoH) deficiency induces psoriasis-like chronic dermatitis by promoting TH17Âcell polarization. Journal of Allergy and Clinical Immunology, 2019, 143, 1878-1891.	2.9	14
3	Cutting Edge: Nqo1 Regulates Irritant Contact Hypersensitivity against Croton Oil through Maintenance of Dendritic Epidermal T Cells. Journal of Immunology, 2018, 200, ji1701389.	0.8	10
4	Rasal3-mediated T cell survival is essential for inflammatory responses. Biochemical and Biophysical Research Communications, 2018, 496, 25-30.	2.1	12
5	NQO1 inhibits the TLR-dependent production of selective cytokines by promoting lκB-ζ degradation. Journal of Experimental Medicine, 2018, 215, 2197-2209.	8.5	37
6	Tâ€eell activation RhoGTPaseâ€activating protein plays an important role in T _H 17â€eell differentiation. Immunology and Cell Biology, 2017, 95, 729-735.	2.3	29
7	Human thymoproteasome variations influence CD8 T cell selection. Science Immunology, 2017, 2, .	11.9	16
8	γÎTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. Journal of Clinical Investigation, 2017, 128, 415-426.	8.2	32
9	A Histone Methyltransferase ESET Is Critical for T Cell Development. Journal of Immunology, 2016, 197, 2269-2279.	0.8	33
10	Thymic stromal cell subsets for T cell development. Cellular and Molecular Life Sciences, 2016, 73, 1021-1037.	5.4	28
11	The thymic cortical epithelium determines the <scp>TCR</scp> repertoire of <scp>IL</scp> â€17â€producing γÎT cells. EMBO Reports, 2015, 16, 638-653.	4.5	45
12	An epistatic effect of apaf-1 and caspase-9 on chlamydial infection. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1271-1280.	4.9	19
13	The Ras GTPase-Activating Protein Rasal3 Supports Survival of Naive T Cells. PLoS ONE, 2015, 10, e0119898.	2.5	34
14	Overexpression of RhoH Permits to Bypass the Pre-TCR Checkpoint. PLoS ONE, 2015, 10, e0131047.	2.5	12
15	Differential Function of Themis CABIT Domains during T Cell Development. PLoS ONE, 2014, 9, e89115.	2.5	10
16	Differential requirement for RhoH in development of $TCR\hat{1}\pm\hat{1}^2$ CD8 $\hat{1}\pm\hat{1}\pm$ IELs and other types of T cells. Immunology Letters, 2013, 151, 1-9.	2.5	12
17	Complete Genomic DNA Sequence of the East Asian Spotted Fever Disease Agent Rickettsia japonica. PLoS ONE, 2013, 8, e71861.	2.5	11
18	Zfat-Deficiency Results in a Loss of CD3ζ Phosphorylation with Dysregulation of ERK and Egr Activities Leading to Impaired Positive Selection. PLoS ONE, 2013, 8, e76254.	2.5	12

#	Article	IF	Citations
19	Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4+ Th cells cytotoxic by activating both perforin- and FasL-pathways. Immunology Letters, 2012, 144, 7-15.	2.5	54
20	Dystrophin conferral using human endothelium expressing HLA-E in the non-immunosuppressive murine model of Duchenne muscular dystrophy. Human Molecular Genetics, 2011, 20, 235-244.	2.9	12
21	The role of endogenous glucocorticoids in lymphocyte development in melanocortin receptor 2-deficient mice. Biochemical and Biophysical Research Communications, 2010, 403, 253-257.	2.1	9
22	RhoH Plays Critical Roles in FcÎμRI-Dependent Signal Transduction in Mast Cells. Journal of Immunology, 2009, 182, 957-962.	0.8	28
23	Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16345-16350.	7.1	63
24	Rac GTPases are involved in development, survival and homeostasis of T cells. Immunology Letters, 2009, 124, 27-34.	2.5	7
25	Characterization of mice deficient in Melanocortin 2 receptor on a B6/Balbc mix background. Molecular and Cellular Endocrinology, 2009, 300, 32-36.	3.2	24
26	The atypical small GTPase RhoH: a novel role in T cell development. Japanese Journal of Clinical Immunology, 2008, 31, 37-46.	0.0	2
27	Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18205-18210.	7.1	140
28	The p85 \hat{l} ± Regulatory Subunit of Class IA Phosphoinositide 3-Kinase Regulates \hat{l}^2 -Selection in Thymocyte Development. Journal of Immunology, 2007, 178, 1349-1356.	0.8	23
29	Chlamydial SET domain protein functions as a histone methyltransferase. Microbiology (United) Tj ETQq1 1 0	.784314 rgBT 1.8	/Qyerlock 1
30	Rac1-mediated Bcl-2 induction is critical in antigen-induced CD4 single-positive differentiation of a CD4+CD8+immature thymocyte line. Journal of Leukocyte Biology, 2007, 81, 500-508.	3.3	8
31	Genome Sequence of the Cat Pathogen, Chlamydophila felis. DNA Research, 2006, 13, 15-23.	3.4	89
32	Cross-Positive Selection of Thymocytes Expressing a Single TCR by Multiple Major Histocompatibility Complex Molecules of Both Classes: Implications for CD4+ versus CD8+ Lineage Commitment. Journal of Immunology, 2006, 176, 1628-1636.	0.8	20
33	Phosphoinositide 3-Kinase in Nitric Oxide Synthesis in Macrophage. Journal of Biological Chemistry, 2006, 281, 17736-17742.	3.4	47
34	Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia. Journal of Antimicrobial Chemotherapy, 2005, 56, 861-868.	3.0	34
35	Impaired IgG Production in Mice Deficient for Heat Shock Transcription Factor 1. Journal of Biological Chemistry, 2004, 279, 38701-38709.	3.4	98
36	PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nature Immunology, 2003, 4, 280-286.	14.5	128

#	Article	IF	CITATIONS
37	Functional phenotype of phosphoinositide 3-kinase p85Â-null platelets characterized by an impaired response to GP VI stimulation. Blood, 2003, 102, 541-548.	1.4	88
38	Absence of Memory B Cells in Patients with Common Variable Immunodeficiency. Clinical Immunology, 2002, 103, 34-42.	3.2	115
39	Pathogenic autoantibody production requires loss of tolerance against desmoglein 3 in both T and B cells in experimental pemphigus vulgaris. European Journal of Immunology, 2002, 32, 627.	2.9	91
40	Lack of evidence for aggregation-dependent enhancement of p56lck in the signal transduction upon major histocompatibility complex recognition by mature T cells. Immunology, 2002, 106, 46-52.	4.4	1
41	Analysis of CD4/CD8 Lineage Commitment by Pronase Treatment and Reexpression Assay. , 2000, 134, 63-68.		1
42	Phosphatidylinositol 3-Kinase and NF-κB/Rel Are at the Divergence of CD40-Mediated Proliferation and Survival Pathways. Journal of Immunology, 2000, 165, 3860-3867.	0.8	74
43	Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. Journal of Clinical Investigation, 2000, 105, 625-631.	8.2	239
44	Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3–kinase. Nature Genetics, 1999, 21, 230-235.	21.4	374
45	Positive selection of CD4+ T cells by TCR-specific antibodies requires low valency TCR cross-linking: implications for repertoire selection in the thymus. European Journal of Immunology, 1998, 28, 3252-3258.	2.9	11
46	Commitment of Immature CD4+8+ Thymocytes to the CD4 Lineage Requires CD3 Signaling but Does Not Require Expression of Clonotypic T Cell Receptor (TCR) Chains. Journal of Experimental Medicine, 1997, 186, 17-23.	8.5	16
47	Co-receptor-independent signal transduction in a mismatched CD8+ major histocompatibility complex class II-specific allogeneic cytotoxic T lymphocyte. European Journal of Immunology, 1997, 27, 55-61.	2.9	7
48	Lineage Commitment in the Thymus: Only the Most Differentiated (TCRhibcl-2hi) Subset of CD4+CD8+Thymocytes Has Selectively Terminated CD4 or CD8 Synthesis. Journal of Experimental Medicine, 1996, 184, 2091-2100.	8.5	51
49	Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: A new perspective on thymic commitment and selection. Immunity, 1995, 2, 413-425.	14.3	192
50	Positive selection of CD4+T cells by TCR ligation without aggregation even in the absence of MHC. Nature, 1994, 371, 67-70.	27.8	88
51	Effective blocking of natural cytotoxicity of young rabbit serum on murine thymocytes by high concentration of glucose in complement-dependent cytotoxicity method. Journal of Immunological Methods, 1992, 154, 109-119.	1.4	4
52	Interference by mineral acids in inductively coupled plasma atomic emission spectrometry. Analyst, The, 1990, 115, 167.	3.5	42
53	Structural Characterization of the Immunoactive and Antiviral Water-solubilized Lignin in an Extract of the Culture Medium of <i>Lentinus edodes </i> Mycelia (LEM). Agricultural and Biological Chemistry, 1990, 54, 479-487.	0.3	26
54	Inhibition of the infectivity and cytopathic effect of human immunodeficiency virus by water-soluble lignin in an extract of the culture medium of Lentinusedodes mycelia (LEM). Biochemical and Biophysical Research Communications, 1989, 160, 367-373.	2.1	66

#	Article	lF	CITATIONS
55	Lignosulfonate from Waste Liquor of Pulping Process Activates Murine Macrophages and Causes Proliferation of Bone Marrow Cells. Agricultural and Biological Chemistry, 1989, 53, 1197-1199.	0.3	O
56	Lignosulfonate, a Water-solubilized Lignin from the Waste Liquor of the Pulping Process, Inhibits the Infectivity and Cytopathic Effects of Human Immunodeficiency Virusin Vitro. Agricultural and Biological Chemistry, 1989, 53, 3369-3372.	0.3	2