
James G Wakefield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Drosophila</i> Morgana is an Hsp90-interacting protein with a direct role in microtubule polymerization. Journal of Cell Science, 2020, 133, .	2.0	3
2	Intimate functional interactions betweenÂTGS1 and the SmnÂcomplex revealed by an analysis of the Drosophila eye development. PLoS Genetics, 2020, 16, e1008815.	3.5	3
3	In vitro reconstitution of branching microtubule nucleation. ELife, 2020, 9, .	6.0	34
4	Cleavable Affinity Purification (Cl-AP): A One-step Procedure to Affinity Purify Protein Complexes. Bio-protocol, 2020, 10, e3821.	0.4	0
5	Drawing and the dynamic nature of living systems. ELife, 2019, 8, .	6.0	5
6	Context-dependent spindle pole focusing. Essays in Biochemistry, 2018, 62, 803-813.	4.7	15
7	Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. ELife, 2018, 7, .	6.0	19
8	Cross-linking mass spectrometry identifies new interfaces of Augmin required to localise the γ-Tubulin Ring Complex to the mitotic spindle. Biology Open, 2017, 6, 654-663.	1.2	25
9	The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Research, 2017, 45, 3068-3085.	14.5	19
10	The Ran Pathway in Drosophila melanogaster Mitosis. Frontiers in Cell and Developmental Biology, 2015, 3, 74.	3.7	15
11	Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex. Current Biology, 2015, 25, 1777-1783.	3.9	25
12	Microinjection techniques for studying centrosome function in Drosophila melanogaster syncytial embryos. Methods in Cell Biology, 2015, 129, 229-249.	1.1	4
13	Chromatin-mediated microtubule nucleation inDrosophilasyncytial embryos. Communicative and Integrative Biology, 2014, 7, e28512.	1.4	7
14	Synergy between Multiple Microtubule-Generating Pathways Confers Robustness to Centrosome-Driven Mitotic Spindle Formation. Developmental Cell, 2014, 28, 81-93.	7.0	87
15	Foreword: chromosomes and microtubules—the dynamic duo of mitosis. Chromosome Research, 2011, 19, 269-273.	2.2	0
16	50 ways to build a spindle: the complexity of microtubule generation during mitosis. Chromosome Research, 2011, 19, 321-333.	2.2	33
17	Wac: a new Augmin subunit required for chromosome alignment but not for acentrosomal microtubule assembly in female meiosis. Journal of Cell Biology, 2009, 184, 777-784.	5.2	63
18	A new Augmin subunit, Msd1, demonstrates the importance of mitotic spindle-templated microtubule nucleation in the absence of functioning centrosomes. Genes and Development, 2009, 23, 1876-1881.	5.9	52

JAMES G WAKEFIELD

#	Article	IF	CITATIONS
19	A Microtubule Interactome: Complexes with Roles in Cell Cycle and Mitosis. PLoS Biology, 2008, 6, e98.	5.6	105
20	Australin: a chromosomal passenger protein required specifically for <i>Drosophila melanogaster</i> male meiosis. Journal of Cell Biology, 2008, 180, 521-535.	5.2	25
21	The Drosophila Protein Asp Is Involved in Microtubule Organization during Spindle Formation and Cytokinesis. Journal of Cell Biology, 2001, 153, 637-648.	5.2	151
22	Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Current Biology, 2000, 10, 1367-1370.	3.9	75