
Lachlan D Rash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO Journal, 2004, 23, 1516-1525.	3.5	352
2	Pharmacology and biochemistry of spider venoms. Toxicon, 2002, 40, 225-254.	0.8	303
3	Spider-Venom Peptides as Therapeutics. Toxins, 2010, 2, 2851-2871.	1.5	251
4	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	2.7	242
5	Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon, 2004, 43, 555-574.	0.8	206
6	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	2.7	187
7	Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3750-3755.	3.3	180
8	Venomics: a new paradigm for natural products-based drug discovery. Amino Acids, 2011, 40, 15-28.	1.2	172
9	Four Novel Tarantula Toxins as Selective Modulators of Voltage-Gated Sodium Channel Subtypes. Molecular Pharmacology, 2006, 69, 419-429.	1.0	141
10	Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli. PLoS ONE, 2013, 8, e63865.	1.1	140
11	The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins, 2019, 11, 666.	1.5	135
12	Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nature Genetics, 2015, 47, 73-77.	9.4	130
13	NaV1.7 as a pain target – From gene to pharmacology. , 2017, 172, 73-100.		104
14	A Dynamic Pharmacophore Drives the Interaction between Psalmotoxin-1 and the Putative Drug Target Acid-Sensing Ion Channel 1a. Molecular Pharmacology, 2011, 80, 796-808.	1.0	85
15	The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. Journal of Physiology, 2006, 570, 339-354.	1.3	82
16	Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology, 2017, 127, 173-184.	2.0	74
17	Inhibition of voltageâ€gated Na ⁺ currents in sensory neurones by the sea anemone toxin APETx2. British Journal of Pharmacology, 2012, 165, 2167-2177.	2.7	73
18	Chemical Synthesis, 3D Structure, and ASIC Binding Site of the Toxin Mambalginâ€2. Angewandte Chemie - International Edition, 2014, 53, 1017-1020.	7.2	66

LACHLAN D RASH

#	Article	IF	CITATIONS
19	Neurotoxicity and Other Pharmacological Activities of the Snake Venom Phospholipase A2 OS2:  The N-Terminal Region Is More Important Than Enzymatic Activity. Biochemistry, 2006, 45, 5800-5816.	1.2	63
20	PcTx1 affords neuroprotection in a conscious model of stroke in hypertensive rats via selective inhibition of ASIC1a. Neuropharmacology, 2015, 99, 650-657.	2.0	55
21	Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future …. Advances in Pharmacology, 2017, 79, 35-66.	1.2	48
22	Neurotoxic activity of venom from the Australian Eastern mouse spider (Missulena bradleyi) involves modulation of sodium channel gating. British Journal of Pharmacology, 2000, 130, 1817-1824.	2.7	44
23	Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon, 2009, 54, 56-61.	0.8	42
24	Functional Expression in Escherichia coli of the Disulfide-Rich Sea Anemone Peptide APETx2, a Potent Blocker of Acid-Sensing Ion Channel 3. Marine Drugs, 2012, 10, 1605-1618.	2.2	41
25	Understanding the Molecular Basis of Toxin Promiscuity: The Analgesic Sea Anemone Peptide APETx2 Interacts with Acid-Sensing Ion Channel 3 and hERG Channels via Overlapping Pharmacophores. Journal of Medicinal Chemistry, 2014, 57, 9195-9203.	2.9	40
26	Inhibition of acidâ€sensing ion channels by diminazene and APETx2 evoke partial and highly variable antihyperalgesia in a rat model of inflammatory pain. British Journal of Pharmacology, 2018, 175, 2204-2218.	2.7	39
27	Defining the role of post-synaptic α-neurotoxins in paralysis due to snake envenoming in humans. Cellular and Molecular Life Sciences, 2018, 75, 4465-4478.	2.4	39
28	Molecular dynamics and functional studies define a hot spot of crystal contacts essential for PcTx1 inhibition of acidâ€sensing ion channel 1a. British Journal of Pharmacology, 2015, 172, 4985-4995.	2.7	35
29	Evidence that histamine is the principal pharmacological component of venom from an Australian wolf spider (Lycosa godeffroyi). Toxicon, 1998, 36, 367-375.	0.8	33
30	The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE, 2017, 12, e0173551.	1.1	33
31	Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona) Tj ETQq1 1 0.78	4314 rgBT 0.8	/Qyerlock 1
32	De novo sequencing of peptides from the parotid secretion of the cane toad, Bufo marinus (Rhinella) Tj ETQq0 0	0 rggT /Ov	rerjock 10 Tf
33	Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula. Toxins, 2015, 7, 2494-2513.	1.5	27
34	The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: Importance of interactions at the channel subunit interface and potential for engineering selective analogues. Biochemical Pharmacology, 2019, 163, 381-390.	2.0	25
35	Discovery and molecular interaction studies of a highly stable, tarantula peptide modulator of acid-sensing ion channel 1. Neuropharmacology, 2017, 127, 185-195.	2.0	23
36	Modulation of Ion Channels by Cysteine-Rich Peptides. Advances in Pharmacology, 2017, 79, 199-223.	1.2	22

LACHLAN D RASH

#	Article	IF	CITATIONS
37	Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3. Marine Drugs, 2012, 10, 1511-1527.	2.2	19
38	lsolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type CaV channels. Biochemical Pharmacology, 2014, 89, 276-286.	2.0	19
39	The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells. Toxins, 2017, 9, 346.	1.5	17
40	The tarantula toxin $\hat{l}^2 \hat{l}$ -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	1.6	16
41	Acid-Sensing Ion Channels: Expression and Function in Resident and Infiltrating Immune Cells in the Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 738043.	1.8	14
42	Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Research, 2016, 5, 1822.	0.8	13
43	Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels. Scientific Reports, 2015, 5, 14763.	1.6	12
44	Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochemical Pharmacology, 2019, 164, 342-348.	2.0	12
45	Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Research, 2016, 5, 1822.	0.8	12
46	Chapter 8. Therapeutic Applications ofÂSpider-Venom Peptides. RSC Drug Discovery Series, 2015, , 221-244.	0.2	11
47	Synthesis of Some Nefopam Analogues as Potential Analgesics. Australian Journal of Chemistry, 2002, 55, 577.	0.5	8
48	Mambalgin-3 potentiates human acid-sensing ion channel 1b under mild to moderate acidosis: Implications as an analgesic lead. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
49	Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
50	Total Synthesis of the Spider-Venom Peptide Hi1a. Organic Letters, 2021, 23, 8375-8379.	2.4	6
51	D. russelii Venom Mediates Vasodilatation of Resistance Like Arteries via Activation of Kv and KCa Channels. Toxins, 2019, 11, 197.	1.5	5
52	Acid-sensing (proton-gated) ion channels (ASICs) (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	3
53	<scp>ASIC3</scp> : First the Heartache, Now a Migraine!. Headache, 2013, 53, 1204-1206.	1.8	2
54	Inhibition of Voltage-Gated Na+ Currents in Sensory Neurons by the Sea Anemone Toxin APETx2. Biophysical Journal, 2012, 102, 324a-325a.	0.2	0

#	Article	IF	CITATIONS
55	Preface. Advances in Pharmacology, 2017, 79, xi-xii.	1.2	0
56	Acid-sensing (proton-gated) ion channels (ASICs) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
57	Acid-sensing (proton-gated) ion channels (ASICs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	Ο