
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8911937/publications.pdf Version: 2024-02-01

SANCELL RAF

#	Article	IF	CITATIONS
1	Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 2014, 30, 1473-1475.	1.8	1,651
2	Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 2014, 24, 132-141.	2.4	1,195
3	Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature Methods, 2015, 12, 237-243.	9.0	850
4	Microhomology-based choice of Cas9 nuclease target sites. Nature Methods, 2014, 11, 705-706.	9.0	336
5	Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics, 2017, 33, 286-288.	1.8	313
6	Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 2015, 31, 4014-4016.	1.8	306
7	Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9. Cell Stem Cell, 2015, 17, 213-220.	5.2	263
8	DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific Reports, 2016, 6, 30620.	1.6	253
9	Site-directed mutagenesis in PetuniaÂ×Âhybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports, 2016, 35, 1535-1544.	2.8	186
10	Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nature Communications, 2018, 9, 2777.	5.8	148
11	Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics, 2018, 19, 542.	1.2	127
12	Adenine base editors catalyze cytosine conversions in human cells. Nature Biotechnology, 2019, 37, 1145-1148.	9.4	95
13	Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nature Communications, 2016, 7, 13350.	5.8	94
14	Intrinsic Z-DNA Is Stabilized by the Conformational Selection Mechanism of Z-DNA-Binding Proteins. Journal of the American Chemical Society, 2011, 133, 668-671.	6.6	92
15	Photoautotrophic production of macular pigment in a <i>Chlamydomonas reinhardtii</i> strain generated by using DNAâ€free CRISPRâ€Cas9 RNPâ€mediated mutagenesis. Biotechnology and Bioengineering, 2018, 115, 719-728.	1.7	92
16	Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Research, 2017, 45, 7897-7908.	6.5	87
17	CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene, 2017, 36, 6823-6829.	2.6	84
18	Current Status and Challenges of DNA Base Editing Tools. Molecular Therapy, 2020, 28, 1938-1952.	3.7	72

#	Article	IF	CITATIONS
19	Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports, 2021, 40, 1037-1045.	2.8	72
20	PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Research, 2021, 49, W499-W504.	6.5	57
21	Adenine base editor engineering reduces editing of bystander cytosines. Nature Biotechnology, 2021, 39, 1426-1433.	9.4	50
22	Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Research, 2022, 50, 1187-1197.	6.5	49
23	Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Research, 2014, 42, 5937-5948.	6.5	46
24	Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9. Bioinformatics, 2016, 32, 2017-2023.	1.8	46
25	High-purity production and precise editing of DNA base editing ribonucleoproteins. Science Advances, 2021, 7, .	4.7	43
26	Deletion of the chloroplast LTD protein impedes LHCI import and PSI–LHCI assembly in Chlamydomonas reinhardtii. Journal of Experimental Botany, 2018, 69, 1147-1158.	2.4	37
27	Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell, 2021, 28, 1614-1624.e5.	5.2	35
28	CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors. Molecular Therapy, 2019, 27, 1364-1371.	3.7	34
29	CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection. Journal of Biological Chemistry, 2017, 292, 10664-10671.	1.6	33
30	CRISPR/Cas9-targeted mutagenesis of F3′H, DFR and LDOX, genes related to anthocyanin biosynthesis in black rice (Oryza sativa L.). Plant Biotechnology Reports, 2019, 13, 521-531.	0.9	32
31	Digenome-seq web tool for profiling CRISPR specificity. Nature Methods, 2017, 14, 548-549.	9.0	31
32	Current trends in gene recovery mediated by the CRISPR-Cas system. Experimental and Molecular Medicine, 2020, 52, 1016-1027.	3.2	30
33	Construction of non-canonical PAM-targeting adenosine base editors by restriction enzyme-free DNA cloning using CRISPR-Cas9. Scientific Reports, 2019, 9, 4939.	1.6	29
34	Analysis of NHEJ-Based DNA Repair after CRISPR-Mediated DNA Cleavage. International Journal of Molecular Sciences, 2021, 22, 6397.	1.8	26
35	Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1. Bioinformatics, 2018, 34, 1077-1079.	1.8	22
36	Response to "Unexpected mutations after CRISPR–Cas9 editing in vivo― Nature Methods, 2018, 15, 239-240.	9.0	22

#	Article	IF	CITATIONS
37	Knockout of SIMS10 Gene (Solyc02g079810) Encoding bHLH Transcription Factor Using CRISPR/Cas9 System Confers Male Sterility Phenotype in Tomato. Plants, 2020, 9, 1189.	1.6	21
38	ID3 regulates the MDC1-mediated DNA damage response in order to maintain genome stability. Nature Communications, 2017, 8, 903.	5.8	20
39	CRISPR-Cas9 Screening of Kaposi's Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells. MBio, 2019, 10, .	1.8	20
40	Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Molecular Therapy, 2022, 30, 2664-2679.	3.7	20
41	Acquisition of seed dormancy breaking in rice (Oryza sativa L.) via CRISPR/Cas9-targeted mutagenesis of OsVP1 gene. Plant Biotechnology Reports, 2019, 13, 511-520.	0.9	19
42	SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget, 2016, 7, 75698-75711.	0.8	18
43	Safe scarless cassette-free selection of genome-edited human pluripotent stem cells using temporary drug resistance. Biomaterials, 2020, 262, 120295.	5.7	17
44	CRISPR-sub: Analysis of DNA substitution mutations caused by CRISPR-Cas9 in human cells. Computational and Structural Biotechnology Journal, 2020, 18, 1686-1694.	1.9	17
45	Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Reports, 2021, 37, 109980.	2.9	16
46	Autofocusing system based on optical astigmatism analysis of single-molecule images. Optics Express, 2012, 20, 29353.	1.7	15
47	Increased PKMζ activity impedes lateral movement of GluA2-containing AMPA receptors. Molecular Brain, 2017, 10, 56.	1.3	15
48	Mg ²⁺ -dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
49	Generation and Transcriptome Profiling of Slr1-d7 and Slr1-d8 Mutant Lines with a New Semi-Dominant Dwarf Allele of SLR1 Using the CRISPR/Cas9 System in Rice. International Journal of Molecular Sciences, 2020, 21, 5492.	1.8	14
50	Antiâ€Atherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. Small, 2020, 16, e2000012.	5.2	14
51	AC-motif: a DNA motif containing adenine and cytosine repeat plays a role in gene regulation. Nucleic Acids Research, 2021, 49, 10150-10165.	6.5	14
52	Web-Based CRISPR Toolkits: Cas-OFFinder, Cas-Designer, and Cas-Analyzer. Methods in Molecular Biology, 2021, 2162, 23-33.	0.4	14
53	The freshwater water flea Daphnia magna NIES strain genome as a resource for CRISPR/Cas9 gene targeting: The glutathione S-transferase omega 2 gene. Aquatic Toxicology, 2022, 242, 106021.	1.9	14
54	Z-DNA stabilization is dominated by the Hofmeister effect. Physical Chemistry Chemical Physics, 2013, 15, 15829.	1.3	13

#	Article	IF	CITATIONS
55	Targeted genome editing, an alternative tool for trait improvement in horticultural crops. Horticulture Environment and Biotechnology, 2016, 57, 531-543.	0.7	13
56	Transcriptomic and physiological analysis of OsCAO1 knockout lines using the CRISPR/Cas9 system in rice. Plant Cell Reports, 2021, 40, 1013-1024.	2.8	12
57	High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. Molecular Therapy - Nucleic Acids, 2022, 27, 175-183.	2.3	12
58	Energetics of Z-DNA Binding Protein-Mediated Helicity Reversals in DNA, RNA, and DNA–RNA Duplexes. Journal of Physical Chemistry B, 2013, 117, 13866-13871.	1.2	11
59	Generation of albino via SLC45a2 gene targeting by CRISPR/Cas9 in the marine medaka Oryzias melastigma. Marine Pollution Bulletin, 2020, 154, 111038.	2.3	11
60	LPA2 protein is involved in photosystemÂll assembly in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2021, 107, 1648-1662.	2.8	11
61	Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials, 2022, 282, 121419.	5.7	11
62	Web-Based Base Editing Toolkits: BE-Designer and BE-Analyzer. Methods in Molecular Biology, 2021, 2189, 81-88.	0.4	9
63	CReVIS-Seq: A highly accurate and multiplexable method for genome-wide mapping of lentiviral integration sites. Molecular Therapy - Methods and Clinical Development, 2021, 20, 792-800.	1.8	9
64	InÂvivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Molecular Therapy, 2022, 30, 119-129.	3.7	9
65	Quantitative assessment of engineered Cas9 variants for target specificity enhancement by single-molecule reaction pathway analysis. Nucleic Acids Research, 2021, 49, 11312-11322.	6.5	9
66	Sensitive Surface Enhanced Raman Scattering-Based Detection of a <i>BIGH3</i> Point Mutation Associated with Avellino Corneal Dystrophy. Analytical Chemistry, 2016, 88, 11288-11292.	3.2	8
67	Targeted cytochrome P450 3045C1 (CYP3045C1) gene mutation via CRISPR-Cas9 ribonucleoproteins in the marine rotifer Brachionus koreanus. Hydrobiologia, 2019, 844, 117-128.	1.0	6
68	CRISPR-mediated gene correction links the ATP7A M1311V mutations with amyotrophic lateral sclerosis pathogenesis in one individual. Communications Biology, 2020, 3, 33.	2.0	6
69	Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene and Genome Editing, 2021, 1, 100004.	1.3	6
70	Machine learning finds Cas9-edited genotypes. Nature Biomedical Engineering, 2018, 2, 892-893.	11.6	5
71	DNA-free Genome Editing of Chlamydomonas reinhardtii Using CRISPR and Subsequent Mutant Analysis. Bio-protocol, 2017, 7, e2352.	0.2	5
72	ldentification and Characterization of PSEUDO-RESPONSE REGULATOR (PRR) 1a and 1b Genes by CRISPR/Cas9-Targeted Mutagenesis in Chinese Cabbage (Brassica rapa L.). International Journal of Molecular Sciences, 2022, 23, 6963.	1.8	5

#	Article	IF	CITATIONS
73	Structure-based elucidation of the regulatory mechanism for aminopeptidase activity. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1738-1747.	2.5	4
74	Structural and dynamic views of the CRISPR-Cas system at the single-molecule level. BMB Reports, 2016, 49, 201-207.	1.1	4
75	A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system. Journal of Plant Biotechnology, 2017, 44, 89-96.	0.1	4
76	i-Silence, Please! An Alternative for Gene Disruption via Adenine Base Editors. Molecular Therapy, 2020, 28, 348-349.	3.7	3
77	Exploring the dynamic nature of divalent metal ions involved in DNA cleavage by CRISPR–Cas12a. Chemical Communications, 2022, 58, 1978-1981.	2.2	3
78	Singleâ€Molecule FRET Combined with Magnetic Tweezers at Low Force Regime. Bulletin of the Korean Chemical Society, 2016, 37, 408-410.	1.0	2
79	Enhancing plant immunity by expression of pathogen-targeted CRISPR-Cas9 in plants. Gene and Genome Editing, 2021, 1, 100001.	1.3	2
80	A thermodynamic understanding of the salt-induced B-to-Z transition of DNA containing BZ junctions. Biochemical and Biophysical Research Communications, 2021, 583, 142-145.	1.0	2
81	Purification of an Intact Human Protein Overexpressed from Its Endogenous Locus via Direct Genome Engineering. ACS Synthetic Biology, 2020, 9, 1591-1598.	1.9	1
82	Efficient Human Cell Coexpression System and Its Application to the Production of Multiple Coronavirus Antigens. Advanced Biology, 2021, 5, 2000154.	1.4	1
83	Development of negative muonium ion source for muon acceleration. Physical Review Accelerators and Beams, 2021, 24, .	0.6	1
84	In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Computational and Structural Biotechnology Journal, 2021, 19, 2477-2485.	1.9	1
85	Target-directed gene-editing approach for developing a new horticultural crop. Acta Horticulturae, 2016, , 289-294.	0.1	0