David L Spector

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8911305/publications.pdf

Version: 2024-02-01

93 papers 24,268 citations

64 h-index 90 g-index

103 all docs

 $\begin{array}{c} 103 \\ \\ \text{docs citations} \end{array}$

103 times ranked 26813 citing authors

#	Article	IF	CITATIONS
1	Patient-Derived Triple-Negative Breast Cancer Organoids Provide Robust Model Systems That Recapitulate Tumor Intrinsic Characteristics. Cancer Research, 2022, 82, 1174-1192.	0.9	21
2	<i>MaTAR25</i> : a long non-coding RNA involved in breast cancer progression. Molecular and Cellular Oncology, 2021, 8, 1882286.	0.7	0
3	PHAROH IncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR. ELife, 2021, 10, .	6.0	18
4	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13
5	Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing. Genome Research, 2020, 30, 1258-1273.	5.5	72
6	MALAT1 Long Non-Coding RNA: Functional Implications. Non-coding RNA, 2020, 6, 22.	2.6	115
7	MaTAR25 IncRNA regulates the Tensin1 gene to impact breast cancer progression. Nature Communications, 2020, 11, 6438.	12.8	63
8	<i>MALAT1</i> long non-coding RNA and breast cancer. RNA Biology, 2019, 16, 860-863.	3.1	83
9	Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends in Molecular Medicine, 2018, 24, 257-277.	6.7	453
10	POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes and Development, 2018, 32, 915-928.	5.9	267
11	Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Reports, 2017, 19, 1723-1738.	6.4	55
12	Antisense Oligonucleotide-mediated Knockdown in Mammary Tumor Organoids. Bio-protocol, 2017, 7, .	0.4	9
13	Mammary Tumor-Associated RNAs Impact Tumor Cell Proliferation, Invasion, and Migration. Cell Reports, 2016, 17, 261-274.	6.4	51
14	Differentiation of mammary tumors and reduction in metastasis upon <i>Malat1</i> lncRNA loss. Genes and Development, 2016, 30, 34-51.	5.9	488
15	Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2. BMC Genomics, 2015, 16, 982.	2.8	2
16	Regulation of the ESC transcriptome by nuclear long noncoding RNAs. Genome Research, 2015, 25, 1336-1346.	5 . 5	80
17	Transient Pairing of Homologous Oct4 Alleles Accompanies the Onset of Embryonic Stem Cell Differentiation. Cell Stem Cell, 2015, 16, 275-288.	11.1	44
18	Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data. Medical Image Analysis, 2015, 19, 1-14.	11.6	15

#	Article	IF	Citations
19	Long non-coding RNAs: modulators of nuclear structure and function. Current Opinion in Cell Biology, 2014, 26, 10-18.	5.4	219
20	Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation. Developmental Cell, 2014, 28, 351-365.	7.0	143
21	Identification and Initial Functional Characterization of a Human Vascular Cell–Enriched Long Noncoding RNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1249-1259.	2.4	247
22	Random monoallelic expression: regulating gene expression one allele at a time. Trends in Genetics, 2014, 30, 237-244.	6.7	112
23	Chromatin organization and transcriptional regulation. Current Opinion in Genetics and Development, 2013, 23, 89-95.	3.3	156
24	Multiple Structural Maintenance of Chromosome Complexes at Transcriptional Regulatory Elements. Stem Cell Reports, 2013, 1, 371-378.	4.8	113
25	Chromatin Meets Its Organizers. Cell, 2013, 153, 1187-1189.	28.9	5
26	The Noncoding RNA $\langle i \rangle$ MALAT1 $\langle j \rangle$ Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Research, 2013, 73, 1180-1189.	0.9	1,413
27	Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated <i>Myc</i> regulation. Genes and Development, 2013, 27, 2648-2662.	5.9	394
28	Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Research, 2013, 41, e182-e182.	14.5	38
29	Lamin A/C is Expressed in Pluripotent Mouse Embryonic Stem Cells. Nucleus, 2013, 4, 53-60.	2.2	93
30	The IncRNA Malat1 Is Dispensable for Mouse Development but Its Transcription Plays a cis-Regulatory Role in the Adult. Cell Reports, 2012, 2, 111-123.	6.4	542
31	Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nature Cell Biology, 2011, 13, 1295-1304.	10.3	238
32	Nuclear Speckles. Cold Spring Harbor Perspectives in Biology, 2011, 3, a000646-a000646.	5.5	664
33	Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 2011, 13, 95-101.	10.3	420
34	Biogenesis and function of nuclear bodies. Trends in Genetics, 2011, 27, 295-306.	6.7	585
35	Four amino acids guide the assembly or disassembly of <i>Arabidopsis</i> histone H3.3-containing nucleosomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10574-10578.	7.1	62
36	A Biological Delivery Platform for Zinc Finger Nucleases Using Transferrin-Mediated Endocytosis. Blood, 2011, 118, 1071-1071.	1.4	0

#	Article	lF	Citations
37	Chromatin Dynamics. Annual Review of Biophysics, 2010, 39, 471-489.	10.0	159
38	A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO Journal, 2010, 29, 3082-3093.	7.8	646
39	An unexpected ending: Noncanonical 3′ end processing mechanisms. Rna, 2010, 16, 259-266.	3.5	54
40	The life of an mRNA in space and time. Journal of Cell Science, 2010, 123, 1761-1774.	2.0	112
41	Regulation of the Histone H4 Monomethylase PR-Set7 by CRL4Cdt2-Mediated PCNA-Dependent Degradation during DNA Damage. Molecular Cell, 2010, 40, 364-376.	9.7	213
42	<i>MEN \hat{l}μ/\hat{l}^2</i> nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 2009, 19, 347-359.	5 . 5	570
43	Nuclear neighborhoods and gene expression. Current Opinion in Genetics and Development, 2009, 19, 172-179.	3.3	159
44	Long noncoding RNAs: functional surprises from the RNA world. Genes and Development, 2009, 23, 1494-1504.	5.9	2,032
45	53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature, 2008, 456, 524-528.	27.8	511
46	Genomeâ€wide transposon tagging reveals locationâ€dependent effects on transcription and chromatin organization in Arabidopsis. Plant Journal, 2008, 55, 514-525.	5.7	80
47	Chromatin Dynamics and Gene Positioning. Cell, 2008, 132, 929-934.	28.9	139
48	$3\hat{a}$ €2 End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA. Cell, 2008, 135, 919-932.	28.9	597
49	A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. Journal of Cell Biology, 2008, 180, 51-65.	5. 2	353
50	Eukaryotic regulatory RNAs: an answer to the â€~genome complexity' conundrum. Genes and Development, 2007, 21, 11-42.	5.9	356
51	Identification of Nuclear Dicing Bodies Containing Proteins for MicroRNA Biogenesis in Living Arabidopsis Plants. Current Biology, 2007, 17, 818-823.	3.9	425
52	SnapShot: Cellular Bodies. Cell, 2006, 127, 1071.e1-1071.e2.	28.9	135
53	PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes and Development, 2006, 20, 784-794.	5.9	88
54	Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO Journal, 2005, 24, 1094-1094.	7.8	1

#	Article	IF	CITATIONS
55	Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats. PLoS Genetics, 2005, 1, e79.	3.5	162
56	Regulating Gene Expression through RNA Nuclear Retention. Cell, 2005, 123, 249-263.	28.9	636
57	Dynamics of Single mRNPs in Nuclei of Living Cells. Science, 2004, 304, 1797-1800.	12.6	476
58	Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei. Journal of Cell Biology, 2004, 167, 51-63.	5.2	51
59	"On the moveâ€ments of nuclear components in living cells. Experimental Cell Research, 2004, 296, 4-11.	2.6	31
60	Stopping for FISH and Chips along the Chromatin Fiber Superhighway. Molecular Cell, 2004, 15, 844-846.	9.7	5
61	From Silencing to Gene Expression. Cell, 2004, 116, 683-698.	28.9	658
62	Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO Journal, 2004, 23, 2651-2663.	7.8	235
63	Proteomic Analysis of Interchromatin Granule Clusters. Molecular Biology of the Cell, 2004, 15, 3876-3890.	2.1	253
64	The Dynamics of Chromosome Organization and Gene Regulation. Annual Review of Biochemistry, 2003, 72, 573-608.	11.1	316
65	Nuclear choreography: interpretations from living cells. Current Opinion in Cell Biology, 2003, 15, 149-157.	5 . 4	41
66	Nuclear speckles: a model for nuclear organelles. Nature Reviews Molecular Cell Biology, 2003, 4, 605-612.	37.0	870
67	Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell, 2003, 113, 703-716.	28.9	1,991
68	Sequential Entry of Components of Gene Expression Machinery into Daughter Nuclei. Molecular Biology of the Cell, 2003, 14, 1043-1057.	2.1	125
69	Disassembly of interchromatin granule clusters alters the coordination of transcription and pre-mRNA splicing. Journal of Cell Biology, 2002, 156, 425-436.	5. 2	133
70	PML Nuclear Body Identification and Ultrastructure in Rodent Tissues and Cultured Cells by Post-Embedding Immunogold Labeling. Microscopy and Microanalysis, 2002, 8, 728-729.	0.4	0
71	Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nature Cell Biology, 2002, 4, 106-110.	10.3	153
72	Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genetics, 2002, 30, 73-76.	21.4	343

#	Article	IF	CITATIONS
73	Methylation of Histone H3 at Lys-9 Is an Early Mark on the X Chromosome during X Inactivation. Cell, 2001, 107, 727-738.	28.9	471
74	Visualization of gene activity in living cells. Nature Cell Biology, 2000, 2, 871-878.	10.3	289
75	Studying Subnuclear Dynamics in Living Cells. Microscopy and Microanalysis, 2000, 6, 836-837.	0.4	0
76	RNA Polymerase II Targets Pre-mRNA Splicing Factors to Transcription Sites In Vivo. Molecular Cell, 1999, 3, 697-705.	9.7	297
77	The cellular organization of gene expression. Current Opinion in Cell Biology, 1998, 10, 323-331.	5.4	219
78	The Perinucleolar Compartment and Transcription. Journal of Cell Biology, 1998, 143, 35-47.	5.2	85
79	Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription In Vivo. Journal of Cell Biology, 1998, 143, 297-307.	5 . 2	236
80	A Covalent Fluorescent–Gold Immunoprobe: Simultaneous Detection of a Pre-mRNA Splicing Factor by Light and Electron Microscopy. Journal of Histochemistry and Cytochemistry, 1997, 45, 947-956.	2.5	77
81	The Dynamic Organization of the Perinucleolar Compartment in the Cell Nucleus. Journal of Cell Biology, 1997, 137, 965-974.	5. 2	116
82	Role of the Modular Domains of SR Proteins in Subnuclear Localization and Alternative Splicing Specificity. Journal of Cell Biology, 1997, 138, 225-238.	5.2	360
83	Applications of the green fluorescent protein in cell biology and biotechnology. Nature Biotechnology, 1997, 15, 961-964.	17.5	335
84	The dynamics of a pre-mRNA splicing factor in living cells. Nature, 1997, 387, 523-527.	27.8	563
85	Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends in Cell Biology, 1997, 7, 135-138.	7.9	99
86	Nuclear Organization and Gene Expression. Experimental Cell Research, 1996, 229, 189-197.	2.6	114
87	Cycling splicing factors. Nature, 1994, 369, 604-604.	27.8	9
88	Nuclear organization of pre-mRNA processing. Current Opinion in Cell Biology, 1993, 5, 442-447.	5.4	111
89	Organization of RNA polymerase II transcription and pre-mRNA splicing within the mammalian cell nucleus. Biochemical Society Transactions, 1993, 21, 918-920.	3.4	13
90	Will the real splicing sites please light up?. Current Biology, 1992, 2, 188-190.	3.9	19

DAVID L SPECTOR

#	Article	IF	CITATIONS
91	Redistribution of U-snRNPs during mitosis. Experimental Cell Research, 1986, 163, 87-94.	2.6	99
92	Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23. Chromosoma, 1984, 90, 139-148.	2.2	278
93	Chromosome structure and mitosis in the dinoflagellates: An ultrastructural approach to an evolutionary problem. BioSystems, 1981, 14, 289-298.	2.0	40